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Many developing countries still face under-provision of reliable energy, especially

in remote rural areas. To address this issue, there is growing interest in utilizing

emerging renewable energy technologies like solar mini-grids to facilitate electricity

access. These efforts are being supported by substantial investments from developing

countries themselves, along with mini-grid aid initiatives from the World Bank, which

has allocated over $3 billion since 2015 (ESMAP, 2022). The underlying belief is that

these technologies hold the potential for win-win outcomes—stimulating development

without compromising environmental quality (Barrett et al., 2023; IEA, 2017).

However, there is still a scarcity of empirical evidence regarding the effectiveness

of stand-alone mini-grids (hereafter, mini-grids) in promoting energy access and ru-

ral community development. A mini-grid is an integrated system that operates au-

tonomously without being connected to a centralized grid and supplies energy to

remote rural communities, where being connected to the central grid is economically

unviable. Existing evidence on mini-grids largely relies on descriptive analyses and

case studies of individual mini-grid projects (Kirubi et al., 2009; Mishra & Behera,

2016; Tenenbaum et al., 2018; Yadav et al., 2019). Early literature on electrification

has primarily focused on large-scale projects such as central grid extension, which

have shown significant positive effects on development (Dinkelman, 2011; Rud, 2012;

Lipscomb et al., 2013).

Studies of central grid-based electrification may not be a good guide to the im-

pact of investing in mini-grids, notably lighter-touch interventions. A fundamental

distinction that sets mini-grids apart from their central grid counterparts is the lim-

ited generation capacity inherent in small-scale, decentralized, renewable-based mini-

grids. It is not uncommon for operators of mini-grids to impose restrictions on the

quantity of power allocated per customer. Consequently, it remains uncertain ex-

ante whether the energy supplied by mini-grids will be sufficient to drive substantial

economic changes.

This paper aims to investigate the impact of solar mini-grids on energy access and

rural development, where rural development is proxied by the accumulation of human

capital, specifically educational attainment. This choice is driven by the fact that

education functions as a cornerstone for numerous other outcomes, spanning from
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enhanced health and expanded employment opportunities to an overall improved

quality of life. Therefore, through an investigation into education, one can discern

early indicators of broader positive changes in the community.

To assess the effectiveness of mini-grids, I employ the Difference-in-Differences ap-

proach that exploits the phased rollout of mini-grids in Indian villages between 2016

and 2022. Specifically, I compare villages that are relatively close and those that

are further away from newly installed mini-grids, before and after the installation of

the nearest mini-grid. To establish causality, the key assumption of this approach is

that the distance to the mini-grid is exogenous within narrowly defined geographical

zones. This assumption is plausible given that villages in close proximity to a mini-

grid are more likely to connect to it and benefit from it compared to those that are

further away. This strategy is suitable considering the localized nature of mini-grids’

impacts.

India presents an important context for studying the effectiveness of mini-grids in

promoting energy access. First, there exists a substantial electricity gap between rural

and urban areas, with a significant portion of the population in India lacking access

to electricity. Additionally, India benefits from a favorable climate for solar energy

generation, which combined with the sharply decreasing costs of solar cells over the

last 20 years (Banares-Sanchez et al., 2024), makes solar mini-grids an increasingly

affordable technology. As of 2022, India has the third-largest mini-grid program

globally, boasting 3,200 installations (ESMAP, 2022).

To analyze the effects of mini-grids’ installation on energy access and human capital

accumulation, I combine data sources on mini-grid characteristics, and energy access,

as well as village and school-level data. A key feature these datasets share is their

detailed spatial coverage, enabling a granular analysis of the local effects of mini-

grids. Since no comprehensive data on the locations of mini-grids exists, I use a

combination of satellite-derived data sources, Open Street Maps data, Bloomberg

data, and World Resource Institute data. The use of multiple sources enables me

to overcome the data limitations of previous papers and expand the scope of the

project. To analyze the effect of mini-grids on electricity access outcomes, I use

changes in nighttime brightness as a proxy for electricity access. The use of a proxy
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is appropriate in this context given the lack of detailed official energy consumption

data at the village level. Furthermore, this measure has been previously adopted in a

wide range of studies on electrification (Machemedze et al., 2017; Burlig & Preonas,

2016).

To estimate the effects of mini-grids on human capital accumulation outcomes, I

focus on indicators of educational attainment. The school data for this study is ob-

tained from the District Information System for Education (DISE), which represents

an annual census of primary and middle schools in India. As compared to other

education data in India, DISE data have the most detailed temporal and spatial

coverage. This is the only source of education data in India that contains precise

village identification information and allows me to link it back to the village data. To

capture the social characteristics of villages, I utilize the SHRUG village-level data,

which offers detailed spatial coverage of all Census villages. This is beneficial for the

project since the empirical analysis is based on being able to identify the distances

between mini-grids and villages. In addition to detailed spatial data, SHRUG also

contains rich social and economic census data. These data are used to control for

trends in population characteristics, as well as to check if local trends in population

characteristics can explain the adoption of mini-grids.

I find that the installation of mini-grids results in a measurable increase in energy

access. Particularly, there is a growth of approximately 21% in nighttime brightness

within the affected Communities. Comparing these findings with previous studies in

developing county context such as Min & Gaba (2014), the estimated effect size is

equivalent to installing 15 additional streetlights or providing electricity to 60 more

homes in a village. When conducting a heterogeneity analysis based on mini-grid

size, I further discover that the observed effects are primarily driven by medium and

large-scale mini-grid installations.

I find that improved energy access translates into enhanced educational outcomes

for children. Specifically, I estimate an approximate 8% increase in student enrollment

at the village level. These observed impact sizes are comparable to the influence of

other infrastructure projects on educational investments, such as central grid electri-

fication programs (Khandker et al., 2014; Van de Walle et al., 2013; Khandker et al.,

3



2013) and school-based sanitation improvement programs (Adukia, 2017). While the

effect sizes are similar for both girls and boys, there is stark heterogeneity of effects by

school type. Specifically, the results indicate that the enrollment effects are primarily

driven by high school students.

To understand the factors contributing to the observed results on education, I in-

vestigate mechanisms related to the supply of education (educational infrastructure,

teacher quality and quantity, number of schools) and demand for education (time

allocation, health, income, and social attitudes toward education). While electrifica-

tion through mini-grids could enhance learning environments in schools, the study

finds limited evidence of mechanisms associated with the supply of education. This

suggests that the primary drivers of change are demand-side mechanisms.

When investigating demand-side mechanisms, I find that mini-grids significantly

enhance residential energy access and ownership of low-load electric appliances (in-

cluding cell phones, radios, TV, and electric fans). The increased ownership of electric

fans suggests potential health benefits and a reduction in exposure to extreme heat.

Additionally, there are indications of improved ownership of productive assets, en-

hanced dwelling quality, and increased agricultural yields, which, in turn, hint at

possible improvements in household incomes. Finally, the increased ownership of cell

phones, radios, and TVs suggests a potential increase in media exposure. This, in

turn, could sensitize individuals to the importance of education, potentially stim-

ulating parental investments in the education of their children. These results are

not sensitive to a range of robustness tests. The results remain consistent when I in-

clude a wide range of controls, apply alternative sample restrictions, and use different

measurements for treatment variables as well as alternative estimation strategies.

This paper makes several contributions. First, this study contributes to the litera-

ture on the impact of electricity infrastructure projects on development, by analyzing

the renewable energy technology of solar mini-grids. They present a large departure

from traditional electrification infrastructure, such as centralized grids based on fossil

fuel, nuclear or hydroelectric sources, due to their relatively low-cost, environmen-

tally sustainable and decentralized nature. While early research on electrification has

predominantly focused on large-scale infrastructure projects, such as central grid ex-
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tensions with significant positive effects on development (Dinkelman, 2011; Rud, 2012;

Lipscomb et al., 2013; Barron & Torero, 2017; Fetter & Usmani, 2020; Moneke, 2020;

Burlig & Preonas, 2016), smaller-scale projects like solar mini-grids might have lower

potential to foster broad community development for several reasons. First, mini-

grids might rely on generation sources with capacities insufficient to drive significant

economic changes. Second, as mini-grids often serve remote and rural communities,

other constraints to growth may exist beyond electricity access. Third, there could

be a perception among the population that mini-grids are inferior to grid electrifi-

cation (Burgess et al., 2020), resulting in lower adoption. Consequently, it remains

uncertain ex-ante whether mini-grids can foster community development.

This paper demonstrates that despite these challenges, solar mini-grids have the

potential to improve energy access and societal outcomes in affected communities.

Specifically, I find that mini-grids can provide more energy and contribute to higher

levels of school enrollment in villages they serve. While the impact of mini-grids on

energy access may be somewhat smaller compared to large-scale central grid expan-

sions programs observed in countries like India, Senegal, and South Africa (Burlig

& Preonas, 2016; Machemedze et al., 2017; Min et al., 2013), they still deliver com-

parable improvements in enrollment rates seen in the literature on infrastructure

projects, such as central grid electrification programs (Khandker et al., 2014; Van de

Walle et al., 2013; Khandker et al., 2013). The observed 8% increase in enrollment

falls within the range of school participation effects found in studies of central grid

electrification programs.

Second, this study expands on prior work on electrification via renewable technolo-

gies by carrying out a large-scale causal evaluation of mini-grids. Prior work has

primarily focused on case study evidence from a relatively small number of mini-

grids. The existing evidence on mini-grids mainly relies on descriptive analyses and

case studies of individual mini-grid projects (Kirubi et al., 2009; Mishra & Behera,

2016; Tenenbaum et al., 2018; Yadav et al., 2019).1 There are only a few causal

investigations of mini-grids’ effects, primarily from a small number of randomized

1For instance, Kirubi et al. (2009) present descriptive survey data from Kenya suggesting a positive effect of
mini-grids on nearby residents. The study by Tenenbaum et al. (2018) explores the impact of three mini-grids
on local communities in rural Cambodia.
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controlled trials (Aklin et al., 2017, 2018). For instance, Aklin et al. (2017) find that

providing standalone community mini-grids to 81 unelectrified habitations in Uttar

Pradesh leads to increased electrification rates and daily hours of access to electricity,

as well as reduced monthly kerosene expenditure. However, they found no systematic

evidence for changes in savings, spending, business creation, time spent working or

studying, or other broader indicators of socioeconomic development one year after

the mini-grid construction. Importantly, given the nature of RCT projects, these

studies are based on a relatively small number of mini-grid projects and have short

follow-up periods, enabling researchers to detect only immediate effects.

To surmount the data limitations inherent in prior investigations of mini-grids,

this paper utilizes a combination of satellite-derived data sources, OpenStreetMap

data, Bloomberg data, and World Resources Institute data to examine mini-grids

at scale, potentially enhancing external validity and improving the precision of esti-

mated effects. This study also adopts a longer time horizon, which is crucial given

the anticipated dynamic effects of mini-grids in practice. People require time to learn

about the benefits of the technology offers, adopt it, and for new norms to evolve,

which shorter-term studies may overlook. As a result, the benefits of mini-grid adop-

tion might be underestimated in shorter-term analyses. Indeed, I find this to be the

case in the study, where improvements take time to emerge. For example, school

enrollment showed only slight signs of improvement one year after the construction

of the mini-grid (less than 2%, statistically insignificant), but improved significantly

by 8-10% after five years.

Third, this paper advances the growing literature on the impacts of technology

adoption and use on human capital in developing countries by examining the effects

of solar mini-grids on educational outcomes (for reviews, see Bulman & Fairlie (2016);

Escueta et al. (2017)). Existing research typically focuses on specific educational tech-

nologies, such as radio (Jamison et al., 1981), cell phones (Aker et al., 2012), satellite

internet (Bianchi et al., 2022), remote lessons (Banerjee & Duflo, 2014; Alpert et al.,

2016; Bettinger et al., 2017; Goodman et al., 2019), interactive videoconferencing

(Johnston & Ksoll, 2022), expert-led video integration (Beg et al., 2022), and TV-

schools (Fabregas & Navarro-Sola, 2024; Borghesan & Vasey, 2024). These studies
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have generally demonstrated positive effects on school attendance, test scores, and

later-life earnings. In contrast, this study highlights the critical role of infrastructure,

specifically solar mini-grids, in enabling the adoption of these technologies. The find-

ings reveal increased ownership of electric appliances—including TVs, radios, and cell

phones—in villages with mini-grids, underscoring their role as a prerequisite for tech-

nology penetration. By expanding access to electricity, mini-grids facilitate broader

access to educational technologies, potentially leading to sustainable improvements

in human capital development in underserved regions. These findings are particularly

relevant for developing countries, where limited access to reliable energy sources often

restricts the potential benefits of educational technologies.

1. Background

1. Setting

A stand-alone mini-grid is an integrated system that operates autonomously with-

out being connected to a centralized grid, supplying energy to remote rural com-

munities where extending the central grid is economically unviable. Intuitively, a

mini-grid provides an intermediate infrastructure solution between the national grid

—intended to serve a large group of users from several generators— and an off-grid,

home-based solar system serving just one or a few users.

India’s setting is ideal for studying mini-grids’ effectiveness in promoting energy

access given several factors: (1) India’s historical lack of electricity access and sub-

stantial size of the unelectrified population, (2) favorable climate for solar energy gen-

eration, and (3) decreasing costs of solar mini-grid sub-components that have made

solar mini-grids an affordable technology to be introduced in a developing country

setting.

To illustrate the first point, in India, per the most recent Census data as of 2011,

electricity access was highly uneven with 32.4 % of the population being unelectrified.

Moreover, even for the population connected to the grid, the reliability of electricity

varied substantially.2 Figure A1 shows that this issue was particularly pronounced

for Indian states in Central and Eastern zones where the average hours of electricity

2Reliability of electricity is measured in hours per day when energy is available.
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per day varied from 3 to 12 hours depending on specific location.3

To support the second point, Figure A13 illustrates the map for the average solar

generating potential at the district level. The Figure shows that India has a high solar

energy generation potential with abundant solar radiation during most of the year.

The most productive regions include Western, Central, and parts of North India.4

Finally, the decreasing costs of solar cells driven primarily by the Chinese gov-

ernment’s subsidies to the solar energy industry in recent decades have made solar

mini-grids an affordable technology.5

All of these developments have culminated in India’s establishment of the world’s

third-largest mini-grid program, with 3,200 installations as of 2022 (ESMAP, 2022).

India’s vision for the future is even more ambitious, with plans for 18,900 additional

mini-grid projects, positioning the country as the global leader in terms of planned

projects.

2. Solar mini-grids

Mini-grid system description

A standalone mini-grid includes generation, energy storage devices, power conver-

sion equipment, and distribution infrastructure (Peskett, 2011; Franz et al., 2014).

The generation of energy is being conducted with the help of a solar photovoltaic

(PV) array – or group of solar panels – that captures and generates electricity from

the sun’s light. Depending on the energy production and the amount of energy being

used by the community, some of the electricity generated is stored in batteries for

future use. The batteries ensure that communities have power at night and during

stretches of cloudy weather.

A mini-grid can supply up to 10 megawatts (MW) of power and, thus, can meet

the basic electricity needs of households, small businesses, schools, hospitals, and

3In this paper, the East zone consists of the Indian states of Bihar, Jharkhand, Odisha and West Bengal,
while the Central zone includes Chhattisgarh, Madhya Pradesh, Uttarakhand and Uttar Pradesh.

4Solar energy generation potential, or Photovoltaic power potential (PVOUT), represents the potential
for solar energy generation in a given area. It is measured in kilowatt-hours per kilowatt-peak (kWh/kWp),
indicating how much electricity a solar panel with a peak capacity of one kilowatt can generate in one year.
Intuitively, it shows how productive a solar panel can be based on the amount of sunlight it receives.

5Specifically, the fall in component prices is primarily driven by the Chinese government’s support of solar
energy in terms of production and innovation subsidies. These solar policies helped drive up Chinese firms’
entry and production, innovation, and exporting. These changes helped to drive down solar generation costs
not just in China but across the world which, in turn, has helped to encourage the global diffusion of solar
energy (Banares-Sanchez et al., 2024).
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other users in one or a few villages. The energy generation capacity is typically

decided in advance given the community’s energy needs. Depending on the capacity

of the system, different uses can be powered. Following Multi-Tier framework of

energy access developed by the World Bank and the UN’s Sustainable Energy for All

(Bhatia & Angelou, 2015) the installation of a mini-grid can move a village from Tier

0 to somewhere between Tier 1 to Tier 4, depending on the capacity of the system

and the number of hours per day when electricity is available.

In particular, small-scale systems (Tier 1 systems) are primarily designed for pow-

ering task lighting, phone charging, and radios. Medium-sized systems, categorized as

Tier 2 and Tier 3, are suitable for operating low-load appliances (like multiple lights,

a television, or a fan), as well as medium-load appliances (such as refrigerators, freez-

ers, food processors, water pumps, rice cookers, and air coolers). On the other hand,

larger capacity systems are capable of powering high-load appliances (like washing

machines, irons, hair dryers, toasters, and microwaves), and even some productive

microenterprise uses (such as irrigation of crops).6

It is worth noting that the features of mini-grids can vary substantially across

projects. Characteristics like ownership and management can fall under the purview

of a utility, a third-party entity, an NGO, or the community members themselves.

Additionally, the type of tariff, be it consumption-based or capacity-based, pre-paid

or post-paid, may differ among mini-grids. In this study, the focus is predominantly

on third-generation technology mini-grids due to their increasing prevalence. 7

Mini-grid construction and placement

Construction of mini-grids conducted by private firms is financed through grants,

debt, and equity investment. Notably, the three largest private mini-grid developers

6A typical small size mini-grid is 33 kWe in capacity. It supplies electricity to 1-4 villages (approximately
300-400 households). Power is distributed from the battery banks to clusters of between 20-100 households.
Transmission wires are typically limited to keep distribution losses low (typically up to 1.5-2 km). Supply
duration totals 5-8 hours per day, concentrated in the early morning and in the evening. Typically, it can
power lighting services, based on LED lamps of 2-6 watts (2-3 light points per household), and mobile phone
charging.

7Compared to first and second-generation mini-grids, these third-generation mini-grids are typically larger
and often incorporate battery storage. They tend to implement pre-paid energy cost systems and meter-based
energy consumption tracking to prevent energy theft. Furthermore, they make use of cutting-edge technologies
like smart meters and remote monitoring systems and are usually designed with the ability to connect to the
main grid if it becomes available.
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worldwide—Tata Power, Husk Power, and OMC Power—all operate in India. Ac-

cording to reports from developers (Desai, 2020), private developers follow a set of

criteria when selecting communities to target:

(1) Solar Potential: Favorable solar conditions, including solar irradiation, tempera-

ture, terrain shading, and cloud coverage, are essential considerations.

(2) Rural unelectrified community. Mini-grids are placed in rural areas that are far

from the Indian central grid.

(3) Demographics: The number of households and the overall population size play a

crucial role. A higher number of households improves the viability of mini-grids. Ad-

ditionally, high population density and growth are preferable, with individual hamlets

located close to each other.8

(4) Customer Paying Capacity: This involves assessing the occupation, consumption

patterns, and the share of low-income households. Understanding the paying capac-

ity is critical for determining the profitability of mini-grids and designing suitable

service packages. Higher non-agricultural economic activity is an indicator of higher

income levels and increased electricity demand.

Rural energy alternatives

Mini-grids offer a solution for rural customers that are not connected to the grid

since they provide a cheaper approach to energy generation than traditional alterna-

tives. I provide a detailed comparison of rural energy generation alternatives in Table

B1.

Traditionally, unelectrified households cope with the situation by using candles,

kerosene lamps for lighting, or dry-cell-battery-powered devices (flashlight or radio).

Another energy-generating technology is diesel generators. However, diesel generators

are highly polluting and less affordable than solar mini-grids because of increasing

diesel costs. An environmentally friendly alternative is solar home systems (SHS),

which primarily offer lighting and mobile charging services. However, mini-grids are

gaining popularity due to their ability to support both basic and productive loads, as

well as commercial activities. Typically, mini-grid-produced energy is cheaper than

that of standalone SHS due to economies of scale.

8Hamlet represents a subpart of a village, typically comprising a few dozen households or fewer.
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Grid electricity, while often unreliable, is often cheaper than mini-grid-produced

electricity because of economies of scale and/or administrative pricing that fails to

recover the full cost of generation, transmission, and distribution (Blankenship et al.,

2019). Comello et al. (2017) compared the Levelized Cost of Electricity (LCOE) for a

representative village in the Gujarat state of India. They found that solar mini-grids

with a battery at $0.380 per kWh were relatively more expensive than the central

grid that could offer power at $0.062 per kWh.

Even though high electricity prices remain an important concern among customers,

some studies suggest that they are willing to pay a higher price for electricity to obtain

a reliable supply (Graber et al., 2018; Alam & Bhattacharyya, 2017; Twerefou, 2014).

Moreover, researchers who have looked into solutions to make off-grid operations more

cost-effective suggest that apart from long-term technological improvements, the use

of energy-efficient appliances, provision of finance to customers to purchase those

appliances, use of tariff bundles that allow customers to choose payment plans based

on their electricity demand, or progressive tariffs that subsidize poor residential users

based on commercial loads can be helpful in the short-term (Muchunku et al., 2018;

Azimoh et al., 2017; Zubi et al., 2016).

2. Conceptual framework: Schooling decisions and Energy access

In this section, I outline the potential channels through which the installation of

mini-grids can impact the accumulation of human capital in India. Broadly speaking

these channels can be classified as related to (1) demand for education and (2) supply

of education.9

1. Demand for education and related channels:

(1) Time Allocation: First, if mini-grids provide lighting, then they extend the effec-

tive duration of the day. This allows children to engage in homework and household

tasks during the evening. Second, children can perform chores in the evening, thus

they can have more time for attending school during the day. Finally, mini-grids

allow other household members to work more efficiently (including use electrified so-

lutions), relaxing the household task burden on children.

9Notably, while 67.6% of the population had access to electricity as of the 2011 Census, only 43% of
schools had functional energy access in 2011 (DISE, 2011).
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(2) Health Channel: Transitioning from coal and wood for cooking to cleaner electric-

ity reduces indoor pollution and disease incidence, indirectly boosting education.10

Secondly, mini-grids supply energy for essential heating and cooling services, helping

communities better cope with extreme temperature events. This is crucial given the

documented detrimental impact of extreme temperatures on human capital accumu-

lation and productivity (Garg et al., 2022; Masuda et al., 2021).

(3) Household income: mini-grid can increase agricultural yields by supporting the

use of electricity for pumps and irrigation systems, enhancing family income through

increased agricultural production. In addition, electrification can make communities

more attractive, potentially motivating inward migration from unelectrified areas.

(4) Knowledge and beliefs: Ownership of TV, radio, and mobile phones, facilitated

by electricity, increases exposure to media, which in turn promotes alternative role

models and alters attitudes to education. Secondly, the installation of streetlights

enhances the safety of school travel, encouraging parents to send their children to

school, particularly girls. Finally, as electrified communities develop, the perceived

returns to education may increase.

2. Supply of education and related channels:

(1) Improved School Infrastructure: Availability of electricity at school acts as an

input for the education production function, making students and teachers more

productive.

(2) Quantity and Quality of Teachers: Electrification can make communities more

attractive, potentially motivating inward migration from unelectrified areas.

(3) Quantity of schools increases: Electric tools and equipment often provide higher

precision and efficiency, leading to faster construction processes. For instance, electric

saws, drills, and welding equipment are more accurate and require less manual effort,

resulting in quicker and more precise construction. Access to electricity allows for

well-lit construction sites, which can extend working hours into the evening. This

increased flexibility can expedite the construction process.

10However, this shift requires adequate mini-grid power capacity for powering medium and large load
appliances.
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3. Data

To analyze the effects of mini-grids’ installation on energy access and human capital

accumulation, I combine data sources on mini-grids characteristics, and energy access,

as well as village and school-level data. A key feature these datasets share is their

detailed spatial coverage, enabling a granular analysis of the local effects of mini-grids.

This section provides details on the underlying data sources.

1. Solar mini-grids

Since no comprehensive data on the locations of mini-grids exists, I use a combina-

tion of satellite-derived data sources, Open Street maps data, Bloomberg data, and

World Resource Institute data. This multi-source approach enables me to overcome

the limitations of previous research and broaden the project’s scope.

Specifically, I utilize a union of solar installation data from all these sources, recog-

nizing that each has its strengths and weaknesses. Satellite data, for instance, offers

objectivity and extensive geographical coverage but may miss smaller installations

(those below 10 kW) due to its coarse imagery resolution. In contrast, incorporat-

ing data sources based on survey data, government agency information, and crowd-

sourced data helps pinpoint the locations of smaller capacity installations. For a

more comprehensive description of each of the mini-grid data sources, please refer to

Appendix C.

2. Electricity access

To analyze the impact of mini-grids on electricity access, this study employs changes

in nighttime brightness as a proxy for measuring electricity access, since direct official

electricity access and consumption data at the village level is not available. For

nightlights data, the study utilizes the version 1 suite of global average radiance

composite images derived from the VIIRS Day/Night Band data, provided by the

Earth Observation Group. These images cover the period from 2014 to 2022. The

VIIRS data offers several improvements compared to its predecessor, the DMSP-

OLS series. These enhancements include a finer spatial resolution of approximately

0.5 × 0.5 km (near the equator), a wider radiometric detection range to address

oversaturation issues in bright urban core centers, and onboard calibration (Elvidge
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et al., 2013).11 The data has undergone filtering to exclude information affected by

stray light, lightning, lunar illumination, and cloud cover. Monthly VIIRS nighttime

lights data were further preprocessed and composited annually.

Using satellite-derived brightness proxies for electrification at the village level is ap-

propriate, as previous studies have successfully correlated nighttime brightness with

electrification rates at the sub-national level. For instance, Min et al. (2013) demon-

strated that electrified villages in Senegal and Mali exhibit significantly higher bright-

ness compared to unelectrified villages. Additionally, Min & Gaba (2014) found a

strong correlation between nighttime brightness, and streetlights and household elec-

trification in Vietnam. Machemedze et al. (2017) correlated household electrification

with brightness in South Africa, and Dugoua et al. (2018) identified strong corre-

lations between brightness and the number of electrified households in rural Indian

villages.

To measure the effects of mini-grids on energy access, I construct a yearly bright-

ness panel at the village level. The preferred measure is to assign each village the

maximum brightness value across all pixels within the village’s shapefile polygon

(Burlig & Preonas, 2016). This reflects the typical organizational structure of South

Asian villages, with concentrated inhabited regions surrounded by fields. Maximum

brightness best captures light emitted from village settlements while avoiding aver-

aging over unlit agricultural land. To test the robustness of the maximum brightness

measure, I use alternative measures: the mean and median of village-level brightness.

My results are similar in significance but smaller in magnitude when I apply these

alternative measures.

3. SHRUG data for village-level characteristics

To obtain village-level social and economic data for this study, I rely on the So-

cioeconomic High-resolution Rural-Urban Geographic Platform for India (SHRUG).

SHRUG offers extensive spatial coverage of all Census villages, which proves ad-

vantageous as the empirical analysis hinges on accurately determining the distances

between mini-grids and villages. Apart from detailed spatial information, SHRUG

also includes comprehensive social and economic census data. In particular, I make

11Please, refer to Table B2 for more detailed comparison of VIIRS and DMSP-OLS series.
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use of three consecutive Indian Population Censuses from 1991, 2001, and 2011. This

data serves two purposes: controlling for trends in population characteristics and ex-

amining whether local population trends can explain the adoption of mini-grids. For

the purpose of this study, I limit the sample to villages that lacked access to power

for domestic and agricultural needs as of the 2011 Census.

4. DISE data for education outcomes and school characteristics

The school data for this study is obtained from the District Information System for

Education (DISE), which represents an annual census of primary and middle schools

in India. The data covers the years 2010 to 2022, and provides the most detailed

temporal and spatial coverage compared to other education datasets in India. Im-

portantly, DISE is the only source of education data that includes precise village iden-

tification information, which enables linking it with village-level data. This dataset,

created by the Ministry of Human Resource Development of the Government of India

and administered by the National University of Educational Planning and Admin-

istration, is designed to comprehensively cover every registered Indian government

primary and middle school.

DISE provides information on educational outcomes that are of primary interest

to this study: student enrollment, exam performance, and grade repetition. School

enrollment is defined as the total number of enrolled students in grades 1-12 across

all schools within a village. However, DISE does not provide the total number of

school-age children in a village, making it impossible to calculate enrollment rates.

Additionally, DISE collects examination outcomes for states that conduct terminal

primary- and middle-school examinations, which are used for promotion decisions and

completion verification. This includes data on the number of students who appeared

for the exam, passed the exam, and achieved distinction. However, examination data

is only available for a subset of years.

Crucially, the DISE dataset includes information on school electrical infrastructure,

allowing me to examine school-level energy access as a mechanism for the effects of

mini-grids on educational outcomes. Furthermore, the dataset covers various school

amenities such as the presence of blackboards, sanitation facilities, water sources,

playgrounds, libraries, boundary walls, access to medical checkups, and access ramps.
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Additionally, data on teacher characteristics, include the number of teachers, years

of experience, and level of education. Together school amenities and teacher charac-

teristics are utilized to study the mechanisms influencing the demand for educational

channels in the empirical analysis.

5. Sample construction

A key feature of the datasets used in this study is their detailed spatial coverage,

which allows for a granular analysis of the local effects of mini-grids by establishing

precise linkages between datasets. The final sample, covering the years 2014-2022, is

constructed by intersecting the data sources and creating a village panel dataset using

precise geocoordinates. Additionally, the dataset is matched to DISE data through

fuzzy matching based on state, district, village names, and zip codes. Further details

on sample construction are provided in the Appendix C.

4. Empirical framework

The source of plausibly exogenous variation for this study comes from the staggered

adoption of solar mini-grid projects from 2014 to 2022. It generates geographic and

temporal variations in energy access and, consequently, human capital outcomes.

To study the effectiveness of mini-grids, I use the Difference-in-Differences (DID)

approach. It is based on comparing villages relatively close and further away from

newly installed mini-grids, before and after the closest mini-grid installation. The

idea behind the strategy is that villages that are relatively close to a mini-grid are

more likely to connect to mini-grids and benefit from it than those relatively far away.

This strategy is appropriate given the localized nature of the effects of the mini-grids.

1. Baseline model

The standard estimation approach for such a scenario commonly employs the Two-

way Fixed Effects (TWFE) estimator. However, recent literature has highlighted

the limitations of TWFE when dealing with groups treated at various time points

(Goodman-Bacon, 2021; Callaway & Sant’Anna, 2021; Sun & Abraham, 2021). First,

TWFE uses already-treated groups as controls, overlooking potential dynamic treat-

ment effects. In practice, it is conceivable to expect that mini-grids can have a dy-

namic effect on rural communities, because the longer a village has a mini-grid, the
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better the communities may adapt to the availability of electricity and develop new

behaviors, such as increased use of electrical appliances, changes in work patterns,

increased connectivity and changes in traditional practices.12

Secondly, even if there is no dynamic effect, TWFE can still introduce bias when

there are heterogeneous treatment effects across groups.13 It is reasonable to ex-

pect heterogeneous treatment effects across groups because reasons such as earlier

adoption might signal a higher motivation and higher perceived benefits of increased

energy access. To address these issues, I follow the method proposed by Callaway

& Sant’Anna (2021) for my baseline analysis. This approach explicitly allows for

multiple time periods, variation in the treatment timing, and the parallel trends as-

sumption holding potentially only after conditioning on observed covariates. Thus, I

estimate “group-time average treatment effects”:

(1) ATT (g, t) = E[Yt − Yg−1|Gg = 1]− E[Yt − Yg−1|Gg = 0],

Where g ∈ (2016, 2022) is the year the group was first treated (for instance, 2016

corresponds to the village group first treated in 2016, and so on), t ∈ (2014, 2022) is a

point in time, Gg is a binary variable that is equal to one if a unit is first treated in the

period g and zero otherwise. I then calculate the overall effect suggested by Callaway

& Sant’Anna (2021) of mini-grid installation by aggregating these group-time average

treatment effects together:

(2) δ =
1

κ

2022∑
g=2016

2022∑
t=2014

w(g, t)ATT (g, t),

12Additionally, the longer a community is exposed to mini-grids, the more time there is for the bene-
fits to accumulate and have a meaningful effect on various aspects of life, such as income, education, and
health. Long-term exposure can contribute to the sustained economic growth of rural communities, fostering
entrepreneurship and attracting investments.

13The TWFE estimator assigns varying weights to observations within a panel. It gives higher weights to
observations in the middle of the panel and lower weights to those at the ends. Consequently, the TWFE
estimator calculates a parameter that is specific to the length of the data used, rather than the actual average
treatment effect. For an in-depth discussion, refer to Goodman-Bacon (2021). It’s important to note that
the TWFE estimator is equal to the Average Treatment Effect (ATT) only when all ATTs from different
groups are identical. However, in designs with numerous groups and periods that implement treatments in a
staggered fashion, such uniformity is unlikely (De Chaisemartin & d’Haultfoeuille, 2020).
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where ATT (g, t) is defined in Equation 1, g corresponds to the time period when a

unit is first treated, and other components are defined as follows:

(3) w(g, t) = I{t ≥ g}P (G = g|G ≤ 2022),

(4) κ =
2022∑

g=2016

2022∑
t=2014

P (G = g|G ≤ 2022),

I also conduct the TWFE estimation. I specify it as the following model with

binary treatment:

(5) Yvt = β0 + δClosev · Postt + β1Closev + γXvt + θt + ϵvt,

where Yvt represents electricity access or human capital outcome of village v in

year t. Closev is a dummy variable that equals unity if for villages within 0-2 km

of mini-grid. Postt is a dummy variable that equals unity after the closest mini-grid

has been constructed. Xvt is a vector of village-level controls. Common village time

shocks are absorbed by the year indicators θt. ϵvt errors clustered at village level.

The coefficient of interest, δ, estimates an intention to treat (ITT) parameter. Even

though virtually all villages in the treated group are in close vicinity to the mini-grid,

not all households from treated villages receive a mini-grid connection.

The central identifying assumption of Callaway & Sant’Anna (2021) approach states

that there is limited treatment anticipation.14 The second assumption is that the

conditional parallel trends assumption. Specifically, in this setting I utilize conditional

parallel trends assumption based on a “Never-Treated” group. More specifically, it

states that, conditional on covariates, the average outcomes for the group first treated

in period g and for the “never-treated” group would have followed parallel paths in

the absence of treatment.15

14This assumption is likely to hold if treatment path is not apriori known and villages are not the ones
that ”choose” their treatment status.

15In addition, the following set-up specific assumptions of Callaway & Sant’Anna (2021) DiD need to be
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2. Event-study framework

As discussed above, the empirical strategy relies upon the conditional parallel trend

assumption. Thus, before presenting my results, I use a more flexible event-study

specification to rule out differential pre-trends. The event-study specification provides

a natural test for the identification assumption of the model as differences in pre-

trends can be examined visually. The specification is:

(6) δes(e) =
2022∑

g=2016

2022∑
t=2014

I(t− g = e)P (G = g|t− g = e)ATT (g, t),

Where δes(e) is the average effect of participating in the treatment e periods after

the treatment was adopted across all groups that are ever observed to have partici-

pated in the treatment for exactly e periods. The event study is also computed using

TWFE16:

(7) Yvt = α+
5∑

τ=−3,τ ̸=−1

δτDvt + λClosev + γXvt + θt + υvt,

where Dvt are dummy variables indicating the number of years (τ = −3, ... ,

5) for village v relative to year of mini-grid installation. The omitted variable is

τ = −1 and corresponds to one year prior to mini-grid installation. Therefore each

coefficient δτ should be interpreted as the average change in outcome of interest in

period τ in villages treated with mini-grids relative to the control villages, and all

these coefficients should be interpreted relative to period τ − 1 . The rest of the

parameters are defined as before. This specification is useful in this context since

satisfied. First, the ”irreversibility of the treatment” should hold, meaning that once unit becomes treated
and it will remain treated. This assumption is met due to the nature of the mini-grid projects roll-out. Once
villages get mini-grid, they remain treated. Second assumption is random sampling, imposing that each unit
is randomly drawn from population of interest. This implies that the data used for estimation is panel or
repeated cross-sectional data. This assumption is satisfied by the longitudinal nature of the VIIRS nighttime
brightness and DISE school datasets. With these data, I can follow village outcomes and treatment status
over time.

16The canonical parallel trend assumption required by TWFE estimator states that the underlying trends
of the two groups being considered are similar. In particular, we need to assume that the trends in energy
access (human capital) outcomes between the treatment and control villages would have been the same in the
absence of a mini-grid.
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it also allows us to capture the dynamics of the effect on treated villages. I discuss

the validity of the parallel trend assumption using the raw data as well as using the

Event-study framework in the Results Section.

3. Data-driven control and treatment groups

I employ a data-driven approach to select treatment and control groups, aiming to

identify affected and unaffected groups with similar observable characteristics. The

descriptive analysis relies on raw nighttime brightness data, and Figure 1 presents

the corresponding results. The figure displays the difference in maximum nighttime

brightness levels (measured in nanoWatts/cm²/sr) before and after mini-grid instal-

lation at varying distances from all mini-grids within my study sample. Specifically,

each bar represents the difference in maximum brightness within concentric circles

(or rings) at 0.5 km intervals. The figure demonstrates that proximity to mini-grids

is related to increased light levels after mini-grid installation. Notably, areas immedi-

ately adjacent to mini-grids exhibit substantial radiance increases, but this brightness

increase diminishes as the distance from the mini-grids increases, stabilizing after a

2 km radius. This observation remains consistent when alternative brightness mea-

sures, such as mean and median brightness, are considered (see Figure A2 in the

Appendix). Based on this finding, I designate villages within 0-2 km as the treat-

ment group and villages within 2-5 km as the control group for subsequent empirical

analysis.

4. Balance tests

Finally, my empirical strategy relies upon the assumption that, within relatively

narrowly defined geographical zones (as defined above), the location of a mini-grid

is uncorrelated with other factors affecting electricity access, human capital, and

other related household outcomes. That is, at the local level, mini-grids are not built

close to the households that (for pre-existing characteristics) are more likely to get an

electricity connection, and/or far from those less likely to do so.17 Thus, each village’s

social characteristics, household, consumption, poverty, employment, amenities, and

17Instead, the exact location of a mini-grid within a narrowly defined geographical area is likely determined
by other (exogenous) factors, such as surface roughness, solar irradiance, presence of a sufficiently ample flat
terrain and close connection to a road.
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Figure 1. Data-driven control and treatment groups: Maximum brightness

Note: The figure displays the difference in nighttime brightness levels (measured in nanoWatts/cm²/sr)
before and after mini-grid installation at varying distances from all mini-grids within my study sample. In
this Figure, each bar represents the maximum recorded brightness value within concentric circles (or rings)
at 0.5 km intervals.

other characteristics should not be predictive of the village’s treatment status. As

an empirical test for this assumption, Table B3 examines whether different village-

specific population characteristics can predict the mini-grid roll-out.18 It shows that

most of the village characteristics fail to predict whether the mini-grid would be

installed. However, villages with a slightly higher number of households, higher village

areas, and a larger number of primary schools are more likely to be treated. However,

it is reassuring to see that taken jointly, predetermined characteristics of the villages

cannot explain whether the village received a mini-grid.

5. Results and Discussion

The installation of mini-grids leads to a measurable increase in energy access. More

specifically, nighttime brightness increases by approximately 21% in the treated com-

munities. This, in turn, leads to improved educational outcomes among children, as

reflected in village-level student enrollment, which experiences an approximately 8%

growth. Notably, the increase in enrollment is primarily seen at the high school level.

The subsequent subsections provide detailed discussions of specific outcomes.

18The village-specific baseline characteristics are computed based on Census 2011 data(year preceding the
treatment).
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1. Energy access

Main results. I begin by presenting descriptive evidence on the impact of mini-grid

installation on nighttime brightness in Figure 2. In the left panel of Figure 2, I illus-

trate the nighttime brightness trends in both the control and treatment groups over

time, relative to the installation of the nearest mini-grid. Prior to the installation, no

differential trends are observed. After year zero, the control group maintains a con-

sistent level of 1.5 brightness units, while the treatment group experiences growth.19

Subsequently, I provide formal event-diagram-type estimation results in the right

panel of Figure 2. The plotted pattern shows no evidence of clear pre-trends: the

estimates of the pre-treatment dummies are all close to zero and insignificant. On

the other hand, most point estimates for post-implementation years are positive, and

some are significant at a 5% level.20

Figure 2. Effects of mini-grid on night-time brightness

Note: The figure illustrates the effects of mini-grid installation on nighttime brightness. The left panel presents
descriptive evidence on the impact of mini-grid installation on nighttime brightness by plotting nighttime
brightness trends in both the control and treatment groups over time, relative to the period of mini-grid
installation. The right panel provides formal event-diagram-type estimation results. This panel plots the
post-treatment and anticipatory effects from the event-study specification corresponding to Equation 6 as
well as the 95% confidence interval for night-time brightness. The treatment group includes villages within
2 km of the mini-grid, while the control group includes villages from 2 to 5 km from the mini-grid. The set
of control variables includes village controls. Robust standard errors are adjusted for clustering at the village
level.

19This observation remains consistent when alternative brightness measures, such as mean and median
brightness, are considered (see Figure A4 in the Appendix).

20Only a few observations are allocated to some of the dummy variables indicating each specific year of
treatment duration. Thus, I do not have the power to identify significant effects for all the different years of
duration of exposure.
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The effects on brightness gradually emerge after the installation.21 I find that,

on average, the installation of mini-grids leads to an increase of approximately 0.23

brightness units, which is equivalent to a 21% growth in nighttime brightness com-

pared to control villages. When comparing these findings with previous studies such

as Min & Gaba (2014), the estimated effect size is similar to installing 15 additional

streetlights or providing electricity to 60 more homes in a village. For a more detailed

comparison to electrification effects found in the literature, please refer to Table 1.

The key takeaway from this Table is that solar mini-grids indeed represent an effec-

tive means of providing energy access to remote communities, albeit with estimated

effects somewhat smaller than those observed in central grid expansion programs in

countries like India, Senegal, South Africa and others.

Table 1—Benchmarking of mini-grid effects on energy access

Study Treatment Effect size

This study Stand-alone solar mini-grid,
India

0.23-0.28 units ↑ at
2 km radius

Burlig & Preonas (2016) Central grid (RGGVY), India 0.18–0.37 units ↑ af-

ter 4–5 years

Min et al. (2013) Central grid, Senegal 0.36-unit ↑

Machemedze et al. (2017) Central grid, South Africa 0.35-units ↑

Note: The table compares the primary estimates presented in this study and those docu-

mented in the existing literature pertaining to electrification effects. Column (1) identifies
the specific studies referenced, while Column (2) outlines the different treatment types under

consideration. These treatments encompass standalone mini-grid systems and central grid

extensions. Column (3) presents the estimated effect sizes of each treatment as reported in
the respective studies.

Heterogeneity by mini-grid system size and distance to mini-grid. I conduct a het-

erogeneity analysis of mini-grid effects. Previous research (e.g., Burlig & Preonas

21The lagged effects can be attributed to several factors. Firstly, it takes time for users to adopt new
technology, learn about it through word of mouth, understand their energy requirements, and decide which
appliances to acquire. Moreover, a significant amount of time is required for a sufficient number of people
to connect to the mini-grid, enabling the detection of these changes. Also, the noise in satellite data makes
it challenging to precisely measure the effects of early adopters if their numbers are limited. Secondly, the
installation date is fuzzy. Some mini-grids are installed early in the year, while others are installed later.
Additionally, the installation date is imperfectly measured. Since a considerable portion of mini-grid data is
obtained from remote sensing, I record an installation year when solar panels are placed on the ground, but I
may not observe the completion of wiring, infrastructure, and system testing, which can introduce additional
delays. Finally, the increase in brightness may also reflect overall community development and the installation
of streetlights. Therefore, it is plausible to expect that it would take time for the village to develop, and the
increase in lights might signify the community’s development, not just electrification.
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(2016)) has indicated that village characteristics and infrastructure features can in-

fluence the effectiveness of infrastructural projects. As shown in Figure A5, the results

of the heterogeneity analysis based on mini-grid size indicate that the observed ef-

fects on brightness are primarily associated with medium and large-scale mini-grid

installations. This result is consistent with the expectation that larger installations

have the capacity to power more electric uses.

Additionally, I conduct a placebo exercise to measure the effect at varying distances

from the mini-grid. The results, presented in Figure A6, reveal an expected pattern.

As we move closer to the mini-grid, there is a more substantial increase in nighttime

brightness. This observation aligns with the understanding that the cost of delivering

electricity rises with the distance between the mini-grid and consumers (Odarno et al.,

2017). Households located near a mini-grid are more likely to connect and benefit

from a more reliable service compared to those farther away.

2. Education

Main results. Figure 3 displays the event-diagram-type estimation results for child

enrollment outcomes, confirming no evidence against the parallel trend assumption.

The estimates of the pre-treatment dummies are all close to zero and insignificant.

On the other hand, all point estimates for post-treatment years are positive. Notably,

the analysis indicates an approximate 8% increase in student enrollment at the village

level due to improved energy access, demonstrating a positive impact on children’s

educational outcomes.

These enrollment effects exhibit a cumulative pattern over time, which is in line

with the requirement of sustained energy access to influence the way people live and,

consequently, educational outcomes. To provide further context, Table 2 compares

the impact sizes of mini-grid projects to those found in the literature on infrastructure

projects, such as central grid electrification programs (Khandker et al., 2014; Van de

Walle et al., 2013; Khandker et al., 2013) and sanitation improvement programs

(Adukia, 2017). The 8% increase in enrollment falls well within the range of school

participation effects.

Heterogeneity. When analyzing effect sizes by gender, I observed similar magni-

tudes for both girls and boys. As shown in Figure 4, village-level enrollment increases
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Figure 3. Effects of mini-grid on village-level enrollment

Note: The figure illustrates the effects of mini-grid installation on total village level school enrollment. It plots
the post-treatment and anticipatory effects from the event-study specification corresponding to Equation 6
as well as the 95% confidence interval for enrollment outcome. The treatment group includes villages within
2 km of the mini-grid, while the control group includes villages from 2 to 5 km from the mini-grid. The set
of control variables includes village controls. Robust standard errors are adjusted for clustering at the village
level.

Table 2—Benchmarking of mini-grid effects on enrollment

Study Treatment Effect

size

This study Stand-alone solar mini-grid, India 8 %

Khandker et al. (2014) Central grid (RGGVY program), India 6-7 %

Van de Walle et al. (2013) Central grid expansion 1980-1990, India 10-14 %

Khandker et al. (2013) Central grid, Vietnam 6-9 %

Adukia (2017) Improving school sanitation, India 8-12 %

Note: The table compares the primary estimates presented in this study and those doc-

umented in the existing literature analyzing the effects of infrastructural projects on ed-

ucation. Column (1) identifies the specific studies referenced, while Column (2) outlines
the different treatment types under consideration. These treatments encompass standalone

mini-grid systems, central grid extensions and school sanitation improvement program. Col-
umn (3) presents the estimated effect sizes of each treatment as reported in the respective
studies.

by approximately 8 students, regardless of gender.

Furthermore, Figure 5 examined enrollment effects based on school type, which

includes primary, middle, and high school. This analysis is motivated by the fact

that transitions from primary to middle school and from middle school to high school

represent significant educational milestones. Additionally, younger children typically
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Figure 4. Heterogeneity analysis: Enrollment effects by gender

Note: The figure illustrates the effects of mini-grid installation on village level school enrollment by gender.
Left panel plots the post-treatment and anticipatory effects from the event-study specification corresponding
to Equation 6 as well as the 95% confidence interval for girls enrollment. Right panel plots the post-treatment
and anticipatory effects from the event-study specification corresponding to Equation 6 as well as the 95%
confidence interval for boys enrollment. The treatment group includes villages within 2 km of the mini-grid,
while the control group includes villages from 2 to 5 km from the mini-grid. The set of control variables
includes village controls. Robust standard errors are adjusted for clustering at the village level.

have fewer labor market opportunities. Given the near-universal enrollment in pri-

mary schools in India, it is unsurprising that we observe no substantial changes in the

number of primary school students. The results indicate that the enrollment effects

are primarily driven by high school enrollment.

6. Robustness

To test the robustness of my baseline results, I conduct a variety of checks. The

results are not sensitive to the inclusion of broad sets of controls, alternative sample

restrictions, utilization of different measurements for treatment variables as well as

utilization of alternative identification strategies.

First, I address the sensitivity of the estimated results to the choice of brightness

measures at the village level. In the Data section, I outlined the construction of a

yearly brightness panel at the village level. The baseline measure assigns each village

the maximum brightness value across all pixels within the village’s shapefile poly-

gon (Burlig & Preonas, 2016). This approach aligns with the typical organizational

structure of South Asian villages, characterized by concentrated inhabited regions

surrounded by fields. Using the maximum brightness effectively captures light emit-

ted from village settlements while avoiding averaging over unlit agricultural land.

To assess the robustness of the maximum brightness measure, I explore alternative
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Figure 5. Heterogeneity analysis: Enrollment effects by school type and gender

Note: The figure presents the results of a heterogeneity analysis, specifically examining the effects of mini-grid
installation on village-level school enrollment by gender and type of school. The types of schools have been
categorized into three distinct groups: primary, middle, and high school. The depicted estimates correspond
to the average post-treatment effects, which were computed utilizing the approach proposed by Callaway &
Sant’Anna (2021). The treatment group includesvillages within 2 km of the mini-grid, while the control group
includes villages from 2 to 5 km from the mini-grid. The set of control variables includes village controls.
Robust standard errors are adjusted for clustering at the village level.

measures, such as the mean and median of village-level brightness. The results, pre-

sented in Table B5, demonstrate that while the significance of the findings remains

consistent, the effect size is slightly smaller when using these alternative measures.

Secondly, I consider alternative sample restrictions beyond the baseline analysis,

which is conducted on villages that were unelectrified as of Census 2011. To address

concerns about data reliability, I introduce two alternative definitions for unelectri-

fied villages. The first definition examines the presence of a central grid line within a

village polygon, leveraging OpenStreetMap (OSM) data.22 The second definition uti-

lizes nighttime brightness from years preceding treatment (2014-2015) and restricts

the sample to villages with a brightness level below 1 nanoWatts/cm2/sr, as mea-

sured by maximum brightness. Table B6 displays the results for the baseline and

these additional definitions. While Definition (1) yields a larger sample but may be

22Central grid infrastructure data from OSM has been previously used for the creation of India’s geospatial
energy map by NITI Aayog in collaboration with Indian Space Research Organization with the support of
Energy Ministries (Jain, n.d.).
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less precise due to potential missing minor central grid lines in OSM, Definition (2)

broadly aligns with the baseline definition. Importantly, the results remain broadly

consistent across all definitions.

Thirdly, my baseline results are obtained using the Callaway & Sant’Anna (2021)

approach, with the ”never-treated” group as a control. As depicted in Figure A9,

the results remain stable when employing the ”not yet treated” group as an alterna-

tive control group. Additionally, I compare my baseline results with those obtained

using the Two-Way Fixed Effects (TWFE) specification, as outlined in Equation 5.

Specifically, Table B7 presents the results of this robustness analysis based on TWFE,

which includes the use of different brightness measures and sample restrictions. The

findings from this analysis are broadly consistent with the estimates obtained through

the approach by Callaway & Sant’Anna (2021), although the effect sizes appear some-

what larger.23 Furthermore, I test the robustness of my results using the alternative

staggered treatment strategy proposed by De Chaisemartin & d’Haultfoeuille (2020).

Figure A7 presents these results, which exhibit a consistent increasing trend, a finding

that is mirrored across the different estimators I employed.

Moreover, I demonstrate the robustness of my findings to different definitions of

treatment variables. I report the results by grouping the years of exposure into

pre-intervention, early post-intervention stage (0-2 years), and late post-intervention

stage (3-5 years) in Figure A8. The idea is that if the effects are driven by income

changes, we would only observe the changes after a certain amount of time. The

results of this analysis reveal a pattern broadly consistent with the hypothesis that

longer exposure generates larger impacts on energy access and child school enrollment.

Indeed, most of the night-time brightness and education improvements occur in the

later post-intervention stage, supporting the notion that the income channel could be

at play.

In a final step, I conduct a robustness exercise to test an alternative timing for the

treatment start year. This analysis is motivated by the potential imprecision in the

recorded installation dates. Since a considerable portion of mini-grid data is obtained

23Given the presence of dynamic effects, the estimates derived through TWFE are potentially biased
upwards. Thus, I use the results obtained with the Callaway & Sant’Anna (2021) approach as my baseline
results.
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from remote sensing, my baseline results record the installation year when solar panels

are placed on the ground. However, this method may not capture the completion of

wiring, infrastructure, and system testing, which can introduce additional delays.

For this robustness analysis, I record installation dates based on changes in night-

time brightness. Specifically, I focus on locations that have experienced substantial

changes in night-time brightness. These locations can be considered as ones where

mini-grids are installed and are actually operational.24

In the pre-treatment periods, the villages in the sample have very low levels of

light (almost near zero), so it is essential to establish an emitted light threshold

to define the mini-grid installation date. This avoids setting a date based on noise

in satellite data. I use a threshold of 0.25 nanoWatts/cm2/sr for this analysis. A

village is considered treated when the night-time brightness increases by at least 0.25

nanoWatts/cm2/sr for the first time after solar panels are recorded on the ground.

Figure A10 presents the results of this exercise graphically.2526

Since the installation date is based on brightness, we mechanically begin to observe

the effects on brightness in the first year of exposure. However, even in villages

that experience changes in brightness, the effects on education still emerge over time,

similar to the baseline results. Finally, I show the robustness of the results to different

threshold choices in Figure A11. The results remain robust across different threshold

levels.27

7. Potential mechanisms

Given the observed changes in children’s educational outcomes, it would be of in-

terest to investigate the potential mechanisms underlying these changes. This study

aims to elucidate two distinct channels contributing to these observed outcomes: the

24The limitation of this analysis is that it will only capture locations where villages use mini-grid energy
for lighting houses or streetlights. It won’t capture locations where energy is used for purposes that don’t
emit light, such as pumping water for agriculture.

25Importantly, this sample is smaller than the baseline analysis because it only includes villages that
experience a change in brightness.

26Intuitively, I expect the educational signal should improve if we refine the sample to only include mini-
grids that are operational. However, the educational signal would decrease if other grids (excluded) were also
operational but the sample was reduced by focusing only on grids that produce light.

27If I reduce the noise threshold, I expect the effect sizes will decrease because the start year will be more
affected by noise in the data. The estimates may also become less precise if I increase the threshold too much,
as some treated villages with smaller brightness changes would be excluded from the sample.
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supply of education (educational infrastructure, teacher quality, and quantity, num-

ber of schools) and demand for education (time allocation, health, income, and social

attitudes toward education). The findings reveal compelling evidence that mini-grids

play a pivotal role in improving access to energy at home and enhancing ownership

of electric appliances. The increased ownership of electric fans suggests potential

health benefits and a reduction in exposure to extreme heat. Additionally, there are

indications of improved ownership of productive assets, enhanced dwelling quality

and improved agricultural yields, which, in turn, hint at possible improvements in

household incomes. Finally, the increased ownership of cell phones, radios, and TVs

suggests a potential increase in media exposure. This, in turn, could sensitize indi-

viduals to the importance of education, potentially stimulating parental investments

in the education of their children.

1. Education supply and related mechanisms

I begin by examining the mechanisms related to education supply. In theory, electri-

fication through mini-grids could grant schools access to electricity, enabling lighting,

operation of electronic devices, and powering audio-visual equipment. Such access

can significantly improve the learning environment, facilitating reading, studying,

and participation in technology-based education. Moreover, electrification may make

these areas more appealing for teachers, potentially encouraging inward migration

from areas lacking electricity. Additionally, mini-grids have the potential to increase

the number of schools in a community, as they can power electric tools and equip-

ment, leading to enhanced precision and efficiency, resulting in faster construction

processes.

Utilizing the DISE school data, I explore several channels, as summarized in Table

3. These channels encompass electricity access, teacher quantity and quality, school

infrastructure, and the number of schools. Overall, I find no compelling evidence of

education supply factors playing a significant role, except for a marginally significant

increase in the number of schools. This observation aligns with the notion that

mini-grid systems are primarily targeted for residential use rather than school and

municipal use in the setting of this study. It suggests that the primary driver of

change is electricity at home, rather than in schools.
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Table 3—Mechanisms: School energy access and infrastructure

Any Electricity Number Number Teachers with Ramps
Electricity Functional of Schools of Teachers ≥ BA

(1) (2) (3) (4) (5) (6)

Post Avg 0.022 0.016 0.048* 0.062 -0.006 0.017
(0.015) (0.015) (0.026) (0.112) (0.018) (0.016)

Observations 23,985 23,985 23,985 23,985 23,985 23,985
Control Outcome Mean 0.091 0.083 2.351 4.448 0.644 0.679

Playground Boundary Latrines Medical Road Any Computers
Wall Functional Checks Available

(7) (8) (9) (10) (11) (12)

Post Avg 0.002 -0.014 0.052 0.041 0.054 0.030
(0.017) (0.016) (0.070) (0.033) (0.036) (0.045)

Observations 23,985 23,985 23,985 23,985 23,985 23,985
Control Outcome Mean 0.495 0.332 1.038 0.569 0.896 0.061

Note: The table presents the results for the effects of minigrid installation on school-level energy access and
infrastructure. The estimates correspond to the average post-treatment effects, which were computed utilizing the
approach proposed by Callaway & Sant’Anna (2021). The treatment group includes villages within 2 km of the
minigrid, while the control group includes villages from 2 to 5 km from the minigrid. The set of control variables
includes village controls. Robust standard errors are adjusted for clustering at the village level. ***, **, and *
indicate significance at the 1, 5, and 10 percent critical level.
Source: District Information System for Education, 2014-2022.

2. Education demand and related mechanisms

Demographic Changes and Migration. As discussed in the Background Section, the

electrification of communities through mini-grids can make them more attractive,

potentially leading to an influx of residents from unelectrified areas. Additionally, as

communities develop, they may experience population growth, including an increase

in the number of children within a village. Given that I only have absolute enroll-

ment numbers and cannot directly calculate enrollment and attendance rates, it is

important to ensure that observed enrollment effects are not driven by changes in the

demographic composition of the villages.

To assess whether there have been demographic changes following the installation

of mini-grids, I utilize Census data from 2011 and a Mission Antyodaya Village Survey

conducted in 2018/20.28 I employ a simple difference-in-differences approach, where

the ’before’ period is based on the 2011 Census data, and the ’after’ period uses

the village survey. Control and treatment groups are defined based on distance, as

28This survey is used as the 2021 India Census data is still not available. This survey comprises a substantial
subset of all census villages.
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discussed previously. The results are presented in Table 4 and provide suggestive

evidence that there have been no significant changes in the number of children or

adults present in a village. This indirect evidence sheds light on no observed changes

in migration or fertility rates.

Table 4—Mechanisms: Demographic trends

Children aged 0-6 Total population
Female Male Female Male
(1) (2) (3) (4)

Within 2 km*After -0.674 -6.224 9.383 2.698
(8.536) (8.793) (72.098) (66.774)

Observations 8,584 8,584 8,584 8,584
Control Outcome Mean 118.681 128.111 873.527 834.214

Note: The table presents the results for the effects of minigrid in-
stallation on the children counts and total village-level population
counts. The estimates are based on a simple difference-in-differences
approach that compares villages relatively close and relatively far
from the minigrid before and after minigrid has been installed. The
’before’ period is based on the Census 2011, and the ’after’ period
uses the Mission Antyodaya Survey(2018/20). The treatment group
includes villages within 2 km of the minigrid, while the control group
includes villages from 2 to 5 km from the minigrid. Standard errors
are clustered at the village level. ***, **, and * indicate significance
at the 1, 5, and 10 percent critical level.
Source: Census 2011 and Mission Antyodaya Survey(2018/20).

Energy connections, asset ownership, and dwelling quality. In this subsection, I

present findings related to access to electricity and household assets based on data

from the 2015/16 and 2019/21 DHS waves. First, I present evidence on generalized

outcomes in Table 5. To draw general conclusions about the mini-grids’ effects, I

present findings for summary indices that aggregate information over multiple treat-

ment effect estimates. For example, I create an index of electric appliance ownership

that averages together nine types of electric appliances. The aggregation improves

statistical power to detect effects that go in the same direction within a domain.29

The results indicate increased at-home energy access and electric appliance owner-

ship. However, it is essential to note that the increase does not yet seem sufficient

29The summary index is defined to be the equally weighted average of z-scores of its components, with
the sign of each measure oriented so that more beneficial outcomes have higher scores. The z-scores are
calculated by subtracting the control group’s mean and dividing by the control group’s standard deviation.
Thus, each component of the index has a mean of zero and a standard deviation of one for the control group.
Consequently, the units of summary indices are standard deviations of control group outcomes.
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Table 5—Mechanisms: Residential energy access and asset ownership

Have Electric Appliances Electricity as Productive Asset Dwelling Quality
Electricity Ownership Index Fuel for Cooking Index Index

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Within 2 km*After 0.096** 0.101** 0.078** 0.092** 0.031 0.030 0.049 0.065 0.033 0.040
(0.046) (0.046) (0.035) (0.037) (0.025) (0.025) (0.051) (0.048) (0.040) (0.040)

FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes No Yes
Observations 10,239 10,239 10,239 10,239 10,239 10,239 10,239 10,239 10,239 10,239
Control Outcome Mean 0.037 0.037 0.000 0.000 0.024 0.024 0.000 0.000 0.000 0.000

Note: The table presents the results for the effects of minigrid installation on residential energy access, asset ownership, and
associated outcomes. The estimates are based on a simple difference-in-differences approach that compares villages relatively
close and relatively far from the minigrid before and after minigrid has been installed. The ’before’ period is based on the
2015/16 wave DHS data, and the ’after’ period uses the 2019/21 wave DHS data. The treatment group includes villages within
2 km of minigrid, while the control group includes villages from 2 to 5 km from minigrid. The electric appliance ownership,
productive asset ownership, and dwelling quality are represented by summary indices. The summary indices are defined to
be the equally weighted average of z-scores of its components, with the sign of each measure oriented so that more beneficial
outcomes have higher scores. The z-scores are calculated by subtracting the control group’s mean and dividing by the control
group’s standard deviation. Thus, each component of the index has a mean of zero and a standard deviation of one for the
control group. Consequently, the units of summary indices are standard deviations of control group outcomes. Columns (1),
(3), (5), (7), and (9) include state fixed effects and district fixed effects. Columns (2), (4), (6), (8), and (10) include village-level
controls. Standard errors are clustered at the village level. ***, **, and * indicate significance at the 1, 5, and 10 percent
critical level.
Source: The Demographic and Health Survey(DHS), waves 2015/16 and 2019/21

to use electricity for cooking.30 Further, I present the estimated effects on outcomes

that can proxy for structural changes in households, such as productive asset own-

ership or household dwelling quality. While point estimates for these outcomes are

not significant, it’s worth noting the 0.065 SD increase in household productive asset

ownership and 0.040 SD increase in the household quality index compared to the

control group.31

In addition, I present evidence on specific electric asset ownership, as depicted in

Figure 6. The results indicate that the effects are primarily driven by radios, TVs,

and mobile phone ownership. This suggests the potential role of the media exposure

channel. Prior studies (Cheung, 2012; Ferrara et al., 2012; Jensen & Oster, 2009;

30In principle this is conceivable as cooking appliances require larger power loads compared to simpler
devices such as TVs, fans, and phones. Traditional cooking alternatives, such as wood, agricultural crop
residues, shrubs, grass, coal, and animal dung, remain prevalent. Although the coefficient estimates are not
significant, I cannot rule out the possibility of a doubling in cooking with electricity in treated communities
in response to mini-grid installation.

31There are several key points to consider regarding these results. First, these findings are based on a
smaller sample of villages from DHS data, rather than encompassing all villages in the Census data, which
might result in reduced statistical power.

Secondly, it is important to acknowledge that for privacy reasons, DHS displaces respondents’ village
coordinates by up to 5 km for rural clusters. This displacement may potentially lead to contamination of the
treated group with control units. As a result, I will mechanically understate the differences between control
and treatment groups, and potentially obtain downward-biased estimates of the true effects. Finally, using
DHS data, one can measure treatment effects at a maximum of 3 to 4 years after installation, which might
not provide sufficient time to fully reflect changes in the outcomes of interest.
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Keefer & Khemani, 2011) have shown that access to media can promote alternative

role models, teach life skills, and alter attitudes towards gender and education.

Figure 6. Mechanisms: Electric appliances ownership and index components

Note: The figure presents the results for the effects of mini-grid installation on the electric appliance ownership
index and specific index components. The estimates are based on a simple difference-in-differences approach
that compares villages relatively close and relatively far from the mini-grid before and after mini-grid has
been installed. The ’before’ period is based on the 2015/16 wave DHS data, and the ’after’ period uses the
2019/21 wave DHS data. The treatment group includes villages within 2 km of mini-grid, while the control
group includes villages from 2 to 5 km from mini-grid. The summary index of electric appliance ownership
combines together nine types of electric appliances. The summary index is defined to be the equally weighted
average of z-scores of its components, with the sign of each measure oriented so that more beneficial outcomes
have higher scores. The z-scores are calculated by subtracting the control group’s mean and dividing by the
control group’s standard deviation. Each component of the index has a mean of zero and a standard deviation
of one for the control group. The units of summary indices are standard deviations of control group outcomes.
Source: The Demographic and Health Survey (DHS), waves 2015/16 and 2019/21.

Notably, we observe that AC ownership remains unchanged, likely due to its lesser

prevalence and affordability in rural Indian communities. However, the increase in

fan ownership suggests a potential influence of the heat adaptation investment chan-

nel. Mini-grids offer energy for vital heating and cooling services, aiding communities

in coping with extreme weather events, which is crucial given the documented detri-

mental impact of extreme temperatures on human capital and productivity (Garg

et al., 2020, 2022).

Agricultural outputs. Mini-grids have the potential to support the use of electric-

ity for pumps and irrigation systems, thereby contributing to increased agricultural
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production and family income.32 To gauge this impact, I employ the Enhanced Veg-

etation Index (EVI) as a proxy for agricultural output. EVI is a chlorophyll-sensitive

measure of plant matter, generated at global coverage and 250 m resolution by the

Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Earth

Observing System-Terra satellite. Each image represents a 16-day composite, with

each pixel value optimized for cloud cover obstruction, image quality, and viewing

geometry via the MODIS VI algorithm (Huete et al., 2002).33

I utilize the Google Earth Engine to create composites of these data for the years

2014-2024 for nine 16-day periods from late May through mid-October, covering the

major (Kharif) cropping season in India (Selvaraju, 2003). For each composite im-

age, EVI pixels were spatially averaged to village polygons. After village aggregation

within each 16-day composite, three proxies for agricultural production are calculated

for each year’s growing season: the difference between early-season EVI (the mean

of the first three 16-day composites) and the max EVI value observed at the village

level (Labus et al., 2002; Rasmussen, 1997), mean EVI (Mkhabela et al., 2005), and

cumulative EVI (Rojas, 2007), which is the sum of EVI from each of the nine com-

posites during the growing season. All EVI measures are then log-transformed for

the regressions to allow for an interpretable effect.

The effects of mini-grid installation on the Enhanced Vegetation Index (EVI) are

presented in Figure 7, with formal estimates provided in Table 6. I use the differenced

measure for my baseline results as it effectively controls for non-crop vegetation (such

as forest cover) by measuring the change in greenness from the planting period (when

the land is fallow) to the point in the season when crops are the greenest.3435 Figure 7

suggests that following mini-grid installation, EVI increases by approximately 5-6%,

with effects growing over time. The trajectory of these effects broadly aligns with

trends observed in night-light and education outcomes.

32Previous literature demonstrates that the input of electricity and appliances such as pumps can signif-
icantly impact crop health and yields, which can be estimated through remotely sensed data (Best, 2014;
Burke & Lobell, 2017; Gupta, 2019).

33Intuitively, EVI measures the ’greenness’ and health of vegetation on the ground.
34Results for alternative measures of EVI are presented in Appendix A, Figure A12. The results are robust

across alternative measures of EVI.
35Note that EVI data is available immediately, while there is a lag in the availability of night lights data,

which is typically pre-processed by the data provider ”Earth Observation Group”. This allows for analysis
over a longer time horizon to assess the effects of treatment on the vegetation index compared to night lights.
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Table 6—Mechanisms: Agricultural yields

Enhanced Vegetation Index

Difference between early Mean value of Cumulative value of
season and max value cropping season cropping season

(1) (2) (3)
Panel A: Logs

Pre avg 0.006 0.002 0.002
(0.005) (0.001) (0.001)

Post avg 0.056*** 0.033*** 0.033***
(0.020) (0.007) (0.007)

Observations 23,985 23,985 23,985
Control mean 8.291 8.199 10.396
Panel B: Levels

Pre avg 27.883 5.301 47.712
(18.465) (4.224) (38.012)

Post avg 241.279** 118.304*** 1064.738***
(78.987) (23.534) (211.808)

Observations 23,985 23,985 23,985
Control mean 4164.103 3677.014 33093.12

Note: The table presents the results for the effects of minigrid installation on the agri-
cultural outputs proxied by the Enhanced Vegetation Index (EVI). The treatment group
includes villages within 2 km of the minigrid, while the control group includes villages
from 2 to 5 km from the minigrid. Standard errors are clustered at village level. ***, **,
and * indicate significance at the 1, 5, and 10 percent critical level.
Data source: satellite imagery collected by the Moderate Resolution Imaging Spectrora-
diometer (MODIS) aboard NASA’s Earth Observing System-Terra satellite from 2014 to
2024. Annual composites are generated from 16-day composites at a 250 m resolution by
aggregating data within village polygons.

I use additional likely correlates of agricultural production to validate the use of

growing-season EVI measures as a proxy for agricultural output at the village level

(Table B4). Cross-sectional regressions with state fixed effects were run using the log

of year-over-year changes in growing season EVI (as described above) as the depen-

dent variable.36At the village level, these correlates include the potential production

of cereal crops (with low input usage) from the FAO Global Agro-Ecological Zones

(GAEZ) aggregated to the village level, the share of village land area under any type

of irrigation, the share of village area used for agriculture, and per capita annual

consumption. Table B4 shows that this measure is highly correlated with three other

proxies for agricultural productivity and per capita consumption at the village level.

37

36For this analysis, I utilize EVI measured in the pre-treatment period. To reduce noise, I define my
baseline EVI measure as the average of the measures for 2011, 2012, and 2013.

37Previous research, such as the work of Asher & Novosad (2020), has explored the use of this proxy.
Researchers have shown that the district-level vegetation index is a good predictor of district-level agricultural
output using data from the Planning Commission’s series of district domestic product data.
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Figure 7. Mechanisms: Effects of mini-grids on agricultural productivity

Note: The figure plots the post-treatment and anticipatory effects from the event-study specification cor-
responding to Equation 6 as well as the 95% confidence interval. Enhanced Vegetation Index (EVI) is
represented as the difference between early-season EVI and the max EVI value observed at the village level.
The treatment group includes villages within 2 km of the mini-grid, while the control group includes villages
from 2 to 5 km from the mini-grid. The set of control variables includes village controls. Robust standard
errors are adjusted for clustering at the village level.
Source: satellite imagery collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard
NASA’s Earth Observing System-Terra satellite from 2014 to 2024. Annual composites are generated from
16-day composites at a 250 m resolution by aggregating data within village polygons.

8. Conclusion

The global electrification frontier is evolving, with emerging green technologies

like solar mini-grids helping to bridge the energy gap in remote rural areas. This

paper investigates the impact of solar mini-grids on energy access and human capital

accumulation in rural India.

By utilizing remote imagery data, conventional survey data, and a Difference-in-

Differences estimation strategy, this study reveals significant positive effects of mini-

grid electrification. The installation of mini-grids has led to a substantial 21% im-

provement in energy access, as measured by nighttime brightness. This increase in

energy access, driven primarily by medium and large-scale mini-grid installations, has

translated into tangible educational benefits for children in the affected communities.

Enrollment in schools has seen an approximate 8% increase, with noteworthy effects

observed for both boys and girls. Furthermore, this study delves into the mechanisms
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driving these observed outcomes, dispelling the notion that school electrification is

the primary driver. Instead, it is the provision of electricity to homes that has had a

more substantial impact on educational attainment, underscoring the importance of

household access. Additionally, this research reveals evidence that aligns with shifts

in the demand for education, encompassing changes in health, household income, and

attitudes toward education.

This research contributes to the literature on the impact of electricity infrastruc-

ture projects on development. In a broader context, this study addresses a critical

gap in knowledge regarding the effectiveness of solar mini-grids in promoting energy

access and rural community development. It provides empirical evidence supporting

the notion that such decentralized and renewable-based technologies can indeed drive

positive changes, albeit gradually. These findings hold implications not only for India

but also for other developing countries facing similar energy access challenges. As

the world continues to grapple with the dual goals of sustainable development and

environmental protection, the role of green technologies like solar mini-grids becomes

increasingly significant. This research underscores the potential of such technolo-

gies to contribute to win-win outcomes, fostering development without compromising

environmental quality.

The findings of this study highlight the potential of solar mini-grids to enhance

energy access and educational outcomes in rural India over time. Policymakers could

focus on investments in these decentralized, renewable energy solutions, offering finan-

cial incentives and support to ensure widespread adoption. Emphasizing household

electrification is crucial, as it has shown substantial benefits for educational attain-

ment, albeit with effects that take time to emerge. Additionally, integrating mini-grid

initiatives with broader rural development programs can create synergistic impacts

on health, income, and community attitudes toward education.

While this study provides insights into the impact of solar mini-grids on energy

access and educational outcomes in rural India, several avenues for future research

remain. First, longitudinal studies that track the long-term impacts of mini-grid

electrification on various socioeconomic outcomes, including health, income, employ-

ment opportunities, and local economic growth, would offer a more comprehensive
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understanding of their benefits. Second, research exploring the scalability and sus-

tainability of mini-grids in different geographical and socio-economic contexts could

help identify best practices for broader application. Additionally, investigating the in-

terplay between mini-grids and other renewable energy technologies, such as wind or

biomass, could provide insights into optimal energy solutions for rural electrification.

Further studies should also analyze the effects of mini-grids on productive activities,

such as small businesses and agricultural operations, to understand how enhanced

energy access can drive economic development. Finally, examining community en-

gagement processes and local governance structures that support successful mini-grid

projects could inform more effective implementation strategies. These future research

directions can help refine policy approaches and maximize the development impact

of solar mini-grids.
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Appendix A. Additional figures

Figure A1. Electricity reliability

Note: The figure illustrates the reliability of electricity in terms of hours per day, along with the corresponding
scale. Greener regions on the plot represent a higher number of electricity hours, while redder areas indicate
a lower number of electricity hours. The data is aggregated at the sub-district level.
Source: SHRUG Atlas based on 2011 Population Census.
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(a) Mean Brightness (b) Median Brightness

Figure A2. Data-driven control and treatment groups: Alternative brightness mea-
sures

Note: The figure displays the difference in nighttime brightness levels (measured in nanoWatts/cm²/sr) before
and after mini-grid installation at varying distances from all mini-grids within my study sample. In Panel (a),
each bar represents the mean recorded brightness value within concentric circles (or rings) at 0.5 km intervals.
In Panel (b), each bar represents the median recorded brightness value within concentric circles (or rings) at
0.5 km intervals.
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(a) Remote, Max (b) Non-remote, Max

Figure A3. Brightness trends: Comparing remote and non-remote mini-grids

Note: The figure provides a comparative analysis of the influence of mini-grid installations on nighttime
brightness based on the remote mini-grid installation status. ”Remote status” is defined as a location situated
at least 7 kilometers away from the nearest mini-grid. The treatment group includes villages within 2 km of
the mini-grid, while the control group includes villages from 2 to 5 km from the mini-grid. Panel (a) presents
descriptive evidence on the impact of mini-grid installation on nighttime brightness by plotting maximum
nighttime brightness trends in both the control and treatment groups over time, relative to the period of
mini-grid installation for remote mini-grids. Panel (b) presents descriptive evidence on the impact of mini-
grid installation on nighttime brightness by plotting maximum nighttime brightness trends in both the control
and treatment groups over time, relative to the period of mini-grid installation for non-remote mini-grids.
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(a) Remote, Mean (b) Remote, Median

Figure A4. Brightness trends: Robustness to alternative brightness measures

Note: The figure compares the effects of mini-grid installation on nighttime brightness by type of brightness
measure used. The treatment group includes villages within 2 km of the mini-grid, while the control group
includes villages from 2 to 5 km from the mini-grid. Panel (a) presents descriptive evidence on the impact
of mini-grid installation on nighttime brightness by plotting mean nighttime brightness trends in both the
control and treatment groups over time, relative to the period of mini-grid installation. Panel (b) presents
descriptive evidence on the impact of mini-grid installation on nighttime brightness by plotting median night-
time brightness trends in both the control and treatment groups over time, relative to the period of mini-grid
installation.
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Figure A5. Heterogeneity analysis: Effects by mini-grid capacity

Note: The figure presents the results of a heterogeneity analysis, specifically examining the effects of mini-
grid installation with respect to mini-grid capacity sizes. These capacities have been categorized into three
distinct groups: top, medium, and bottom terciles. The depicted estimates correspond to the average post-
treatment effects, which were computed utilizing the approach proposed by Callaway & Sant’Anna (2021).
The treatment group includes villages within 2 km of the mini-grid, while the control group includes villages
from 2 to 5 km from the mini-grid. The set of control variables includes village controls. Robust standard
errors are adjusted for clustering at the village level.
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Figure A6. Heterogeneity analysis: Effects by distance to mini-grid

Note: The figure presents the results of a heterogeneity analysis, specifically examining the effects of mini-
grid installation at different distances from the mini-grid. Specifically, the control group remains the same,
comprising villages situated between 2 to 5 kilometers from the mini-grid. In contrast, the treatment group
undergoes changes, encompassing villages within 2 kilometers from the mini-grid and, subsequently, villages
located within 1 kilometer and 0.5 kilometers from the mini-grid. The depicted estimates correspond to
the average post-treatment effects, which were computed utilizing the approach proposed by Callaway &
Sant’Anna (2021). The set of control variables includes village controls. Robust standard errors are adjusted
for clustering at the village level.
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Figure A7. Robustness: Alternative staggered estimation strategy

Note: The figure compares the post-treatment and anticipatory effects using the event-study specification
from Callaway & Sant’Anna (2021) and De Chaisemartin & d’Haultfoeuille (2020). The treatment group
includes villages within 2 km of the mini-grid, while the control group includes villages 2 to 5 km away from
the mini-grid. The set of control variables includes village controls. Robust standard errors are adjusted for
clustering at the village level.
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Figure A8. Robustness: Effects by stage

Note: The figure presents the results on the effects of mini-grid installation on energy access and education
outcomes at different stages relative to the installation. The treatment group includes villages within 2 km of
the mini-grid, while the control group includes villages from 2 to 5 km from the mini-grid. The set of control
variables includes village controls. Robust standard errors are adjusted for clustering at the village level.
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(a) Control group: never treated (b) Control group: not yet treated

Figure A9. Differential treatment timing: Callaway & Sant’Anna (2021)

Note: The figure illustrates the effects of mini-grid installation on night-time brightness by utilizing different
control group definitions. Panel (a) plots the post-treatment and anticipatory effects from the event-study
specification corresponding to Equation 6 as well as the 95% confidence interval using ”Never treated” villages
as control group. Panel (b) plots the post-treatment and anticipatory effects from the event-study specification
corresponding to Equation 6 as well as the 95% confidence interval using ”Not yet treated” villages as control
group. The set of control variables includes village controls. Robust standard errors are adjusted for clustering
at the village level.
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Figure A10. Robustness: Alternative treatment start time based on night time bright-
ness

Note: The figure plots the post-treatment and anticipatory effects from the event-study specification corre-
sponding to Equation 6 as well as the 95% confidence interval. This plot uses an alternative start timing
compared to the baseline specification. The baseline specification uses the start year (year zero) when solar
panels first appear on the ground. The new start year for the current results is the year after the mini-grid
installation, when nighttime brightness increases by at least 35%. This indicates that the mini-grid is func-
tional and actively providing light. This high threshold is chosen to mitigate the effects of noise in satellite
data. The treatment group includes villages within 2 km of the mini-grid, while the control group includes
villages from 2 to 5 km from the mini-grid. The set of control variables includes village controls. Robust
standard errors are adjusted for clustering at the village level.
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Figure A11. Robustness: Alternative treatment start time and effects by threshold

Note: The figure presents the results on the effects of mini-grid installation on energy access and education
outcomes using an alternative approach to treatment start timing based on nighttime brightness. Specifically,
the new start year of treatment is defined as the year after the mini-grid installation, when nighttime brightness
increases substantially. The baseline results use a threshold of 35%. The figure shows the robustness of the
results to alternative thresholds. The treatment group includes villages within 2 km of the mini-grid, while
the control group includes villages from 2 to 5 km from the mini-grid. The set of control variables includes
village controls. Robust standard errors are adjusted for clustering at the village level.
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(d) Enhanced Vegetation Index (level, mean)
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Figure A12. Mechanisms: Alternative measures for EVI as proxy of agricultural yields

Note: The figure plots the post-treatment and anticipatory effects from the event-study specification cor-
responding to Equation 6 as well as the 95% confidence interval. The Enhanced Vegetation Index (EVI)
is presented in logarithmic terms in panels (a), (c), and (e), and in levels in panels (b), (d), and (f). The
treatment group includes villages within 2 km of the mini-grid, while the control group includes villages from
2 to 5 km from the mini-grid. The set of control variables includes village controls. Robust standard errors
are adjusted for clustering at the village level.
Source: satellite imagery collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard
NASA’s Earth Observing System-Terra satellite from 2014 to 2024. Annual composites are generated from
16-day composites at a 250 m resolution by aggregating data within village polygons.57



Figure A13. Photovoltaic power potential of India

Note: The figure depicts the map showing the average Photovoltaic power potential (PVOUT), which repre-
sents the potential for solar energy generation. PVOUT is measured in kWh/kWp and data is aggregated at
the district level.
Source: Data is generated by SOLARGIS (https://solargis.com) and made available through the Global Solar
Atlas, World Bank.
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Appendix B. Additional tables

Table B1—Comparison of rural energy alternatives

Category Central Grid Mini-grid Solar Home Diesel

Extension System(SHS) Generator

Electricity

Cost

Low, economies

of scale and sub-
sidies

Medium,

cheaper than
SHS, economies

of scale

High High, increasing

cost of diesel

Reliability Low, load shed-

ding, tail-end
voltage drops

Reliable for load

within system’s
initial capacity

Reliable for load

within system’s
initial capacity

Reliable

Pollution At generation
point

Low Low Very high

Note: The table compares rural energy generation options, including the Central Grid, Mini-
grid, Solar Home Systems (SHS), and Diesel Extension System. It evaluates these alternatives

based on key parameters such as electricity cost, reliability, and environmental impact.

Source: Psaltakis (2019), the Smart Power India Report (2020).
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Table B2—Comparison of night-time brightness data sources

Characteristic DMSP-OLS JPSS(VIIRS)

Spatial Resolution 5000*5000 meters 742*742 meters

Radiometric Resolution Low, 6-bit pixel data, val-
ues range 0-63

High, 14-bit pixel data

Calibration No On-board calibration

Saturation Common in urban cores No

Time Span (ready-to-use) 1992-2012 2014-2021

Measurement units Digital number nanoWatts/cm2/sr

Note: The table offers a comprehensive comparison of nighttime brightness data sources,

specifically contrasting the VIIRS Day/Night Band data, provided by the Earth Obser-
vation Group, with its predecessor, the DMSP-OLS series. The comparison encompasses

several key parameters, including Spatial Resolution, Radiometric Resolution, Calibra-

tion, Saturation, Time Span, and Measurement Units
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Table B3—Balance table: How do treated villages compare to control villages?

Control Treat T-test for Control Treat T-test for
(2-5 km) (0-2 km) Difference (2-5 km) (0-2 km) Difference
Mean/SE Mean/SE In Means Mean/SE Mean/SE In Means

(1) (2) (1)-(2) (1) (2) (1)-(2)
Household characteristics Schools
Number of households 332.558 368.920 -36.362* Number of primary schools 1.368 1.556 -0.188**

(12.758) (31.590) (0.036) (0.096)
Average household size 6.714 6.649 0.065 Number of middle schools 0.653 0.716 -0.063

(0.023) (0.043) (0.025) (0.062)
Consumption and poverty Number of secondary schools 0.145 0.188 -0.043
Per capita consumption 15170.153 14987.722 182.431 (0.013) (0.028)

(127.511) (222.272) Number of senior secondary schools 0.088 0.112 -0.024
Poverty rate 0.386 0.397 -0.011 (0.009) (0.023)

(0.005) (0.010) Number of colleges 0.023 0.012 0.011
Area and proximity (0.005) (0.007)
Village area 216.636 282.199 -65.563* Employment

(8.375) (21.126) Manufacturing employment per adult population 0.012 0.012 0.000
Agricultural land as a % of village area 0.756 0.700 0.056 (0.003) (0.002)

(0.007) (0.017) Services employment per adult population 0.036 0.041 -0.005
Agricultural productivity 8.379 8.357 0.021 (0.002) (0.004)

(0.004) (0.009) % of agroprocessing employment 0.715 0.638 0.077
Accessible by road 0.797 0.836 -0.039 (0.044) (0.076)

(0.012) (0.023) % of storage and warehousing employment 0.090 0.117 -0.028
Min distance place population > 10k 7.365 8.221 -0.856 (0.030) (0.054)

(0.172) (0.399) % of households with cultivation as main income source 0.321 0.384 -0.062
Min distance place population > 50k 26.645 25.538 1.107 (0.010) (0.022)

(0.286) (0.605) % of workers employed in agriculture 0.304 0.347 -0.043
Min distance place population > 100k 35.005 40.673 -5.668 (0.009) (0.019)

(0.601) (1.497)
Min distance place population > 500k 79.617 78.803 0.814

(0.606) (1.177)
Min distance to canal 1.882 2.594 -0.712

(0.106) (0.275)
Min distance to river 15.523 14.389 1.134

(0.336) (0.612)
Observations 3541 751 3541 751
Joint significance test (p-value) 0.849

Note: The table examines whether different social and cultural village-specific population characteristics can predict village treatment status. The treatment group includes
villages within 2 km of the minigrid, while the control group includes villages from 2 to 5 km from the minigrid. The value displayed for t-tests are the differences in the means
across the groups. The bottom line indicates p-value of joint significance test. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.
Source: 2011 Population Census.
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Table B4—Correlates of EVI proxy for agricultural yields

Enhanced Vegetation Index, log difference

(1) (2) (3) (4) (5)
Crop suitability (log) 0.247*** 0.248***

(0.038) (0.039)
Irrigation (share) 0.148*** 0.139***

(0.024) (0.023)
Agricultural land (share) 0.044 0.072**

(0.032) (0.033)
Consumption (log) 0.051** 0.065**

(0.026) (0.029)

Observations 4,292 4,292 4,292 4,292 4,292

Note: Enhanced Vegetation Index (EVI) is expressed in logarithmic terms and
is represented as the difference between early-season EVI and the max EVI value
observed at the village level. For validation purposes, agricultural production
proxy is regressed on other likely correlates of yields. Village level EVI is regressed
on log crop suitability, share of village land irrigated, and log consumption per
capita, all with district fixed effects. Heteroskedasticity robust standard errors
are reported below point estimates. ***, **, and * indicate significance at the 1,
5, and 10 percent critical level.
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Table B5—Robustness: Effect of Minigrid on Night Time Brightness Using Alterna-
tive Brightness Measures

Max Mean Median
(1) (2) (3)

Post Avg 0.228*** 0.195*** 0.213***
(0.073) (0.038) (0.036)

Observations 23,985 23,985 23,985
Control Outcome Mean 1.093 0.684 0.654

Note: The table displays the findings of a robustness
analysis that assesses the impact of minigrid installation on
nighttime brightness at the village level. This evaluation
employs various measures of nighttime brightness. In
Column (1), the dependent variable is the maximum bright-
ness, which is calculated as the highest level of brightness
aggregated over a village polygon and composited on an
annual basis. In Column (2), the analysis employs mean
brightness as the dependent variable, calculated as the
average brightness level aggregated over the same polygon
of villages and composited annually. Column (3) employs
median brightness as the dependent variable, calculated as
the median value of brightness within the same polygon
of villages and also composited annually. The estimates
correspond to the average post-treatment effects, which
were computed utilizing the approach proposed by Callaway
& Sant’Anna (2021). The treatment group includes villages
within 2 km of the minigrid, while the control group includes
villages from 2 to 5 km from the minigrid. The set of control
variables includes village controls. Robust standard errors
are adjusted for clustering at the village level. ***, **, and *
indicate significance at the 1, 5, and 10 percent critical level.
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Table B6—Robustness: Effect of minigrid on night-time brightness using alternative
electrification definitions

Max Mean Median
(1) (2) (3)

Panel A: unelectrifed as of Census 2011

Post Avg 0.228*** 0.195*** 0.213***
(0.073) (0.038) (0.036)

Observations 23,985 23,985 23,985
Panel B: no central grid line

Post Avg 0.200** 0.071 0.074
(0.066) (0.037) (0.039)

Observations 28,172 28,172 28,172
Panel C: baseline brightness ≤ 1

Post Avg 0.253*** 0.151** 0.170**
(0.070) (0.047) (0.041)

Observations 23,399 23,399 23,399

Note: The table presents the results of a robustness analysis, which involves as-
sessing nighttime brightness under varying sample criteria based on electrification
definitions. Panel A provides estimates from the baseline analysis, where only vil-
lages lacking electricity access for domestic and agricultural purposes, as of the 2011
Census, are included. Panel B focuses on villages that do not have a central grid line
within their respective village polygons. In Panel C, the sample is restricted to in-
clude only villages with a brightness level below 1 nanoWatt/cm²/sr, as determined
by the maximum brightness levels observed in the years prior to the treatment pe-
riod (2014-2015). The estimates correspond to the average post-treatment effects,
which were computed utilizing the approach proposed by Callaway & Sant’Anna
(2021). The treatment group includes villages within 2 km of the minigrid, while
the control group includes villages from 2 to 5 km from the minigrid. The set of
control variables includes village controls. Robust standard errors are adjusted for
clustering at the village level. ***, **, and * indicate significance at the 1, 5, and
10 percent critical level.
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Table B7—Robustness: TWFE estimates by remote minigrid status

Max Mean Median
All Remote Non All Remote Non All Remote Non

Only Remote Only Remote Only Remote
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Within 2 km*Post 0.186*** 0.275*** 0.069 0.108*** 0.205*** 0.025 0.113*** 0.223*** 0.020
(0.057) (0.085) (0.075) (0.029) (0.038) (0.044) (0.028) (0.036) (0.043)

FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 35,798 23,985 11,813 35,798 23,985 11,813 35,798 23,985 11,813
Control Outcome Mean 1.089 1.093 1.083 0.692 0.684 0.703 0.664 0.654 0.676

Note: The table presents the robustness analysis results on the effects of mini-grid installation on nighttime brightness. The
estimates are based on the TWFE specification corresponding to Equation 5. The table facilitates a comparative evaluation
of these results across three categories: the overall sample, remote mini-grids, and non-remote mini-grids. For this analysis,
a remote mini-grid is defined as one located at a minimum distance of 7 kilometers from the nearest mini-grid. Further, this
evaluation employs various measures of nighttime brightness. In Columns (1) to (3), the dependent variable is the maximum
brightness. In Columns (4) to (6), the analysis employs mean brightness as the dependent variable. Columns (7) to (9)
employ median brightness as the dependent variable. The treatment group includes villages within 2 km of the minigrid,
while the control group includes villages from 2 to 5 km from the minigrid. The set of control variables includes state fixed
effects, district fixed effects, village controls. Robust standard errors are adjusted for clustering at the village level. ***, **,
and * indicate significance at the 1, 5, and 10 percent critical level.
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Appendix C. Data

1. Sample construction details

A key feature that datasets in this study share is their detailed spatial coverage,
enabling a granular analysis of the local effects of mini-grids by establishing precise
linkages between datasets. The final sample, covering the years 2014-2022, is con-
structed by intersecting the data sources and creating a village panel dataset using
precise geocoordinates. Several important aspects of the DISE data merit attention.
Firstly, DISE school data experienced a change in school identification codes, with

distinct sets of numerical codes used for 2010-2017 and 2018-2022.38 I apply a mul-
tistep string matching algorithm to merge the 2010-2017 DISE school data with the
2018-2022 DISE data. First, I create a concordance between school codes and village
names as reported in the DISE dataset. Often, a single school is associated with mul-
tiple village names in different years due to variant spellings or administrative village
splits. Second, I search for exact string matches between villages in earlier and later
school data based on state, district, zip code, and village name. Third, for the re-
maining unmatched villages, I use Stata’s reclink fuzzy string matching function.39

Fourth, for any remaining unmatched villages, I apply the Masala merge fuzzy match
routine developed by Asher & Novosad (2020). This algorithm computes the Leven-
shtein distance between strings, accounting for letter substitutions and interpolations
common to Hindi transliterations.40 After establishing a rough new DISE-old DISE
village concordance, I use school codes to resolve duplicate village matches.41

Secondly, DISE school data lacks geocoordinates. To address this, I link DISE
data to Census village geocoordinates using location names and then integrate it
with other datasets. Specifically, I use a procedure similar to the one outlined above
to match DISE schools to Census villages through a fuzzy matching process. First,
for each village in the school data, I construct a list of all observed village name
transliterations. Next, I search for string matches between village names already
linked to Census codes and DISE village names, following the exact string match,
reclink, and Masala merge progression described above. Overall, about 96% of villages
from the DISE school data match the 2011 Census. The matching status of the village
does not appear to be related to observable characteristics of the villages, as shown
in Table C1.

38Within these two sets of data, I separately link schools across years based on unique numerical school
codes.

39I utilize a cutoff of 0.8 for the reclink command.
40Masala merge has been shown to be more accurate and flexible than standard fuzzy merging routines

like reclink. However, I utilize reclink to remove close matches before applying the more computationally
intensive Masala merge algorithm.

41I keep the most frequent match for each school.
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Table C1—Balance table: How do matched villages compare to unmatched villages?

Matched Unmatched T-test for Matched Unmatched T-test for
Villages Villages Difference Villages Villages Difference
Mean/SE Mean/SE In Means Mean/SE Mean/SE In Means

(1) (2) (1)-(2) (1) (2) (1)-(2)
Household characteristics Schools
Number of households 388.374 367.282 21.092 Number of primary schools 1.607 1.718 -0.111

(23.673) (54.759) (0.061) (0.160)
Average household size 6.625 6.555 0.070 Number of middle schools 0.732 0.709 0.023

(0.035) (0.059) (0.041) (0.086)
Consumption and poverty Number of secondary schools 0.121 0.137 -0.016
Per capita consumption 15229.648 14712.302 517.346 (0.020) (0.036)

(174.711) (306.780) Number of senior secondary schools 0.065 0.043 0.022
Poverty rate 0.391 0.419 -0.028 (0.014) (0.025)

(0.008) (0.016) Number of colleges 0.011 0.009 0.002
Area and proximity (0.005) (0.009)
Village area 297.625 345.653 -48.028 Employment

(16.043) (30.321) Manufacturing employment per adult population 0.009 0.011 -0.002
Agricultural land as % of total village area 0.676 0.600 0.075 (0.001) (0.002)

(0.013) (0.027) Services employment per adult population 0.029 0.030 -0.001
Agricultural productivity 8.359 8.326 0.033 (0.002) (0.003)

(0.006) (0.011) % of agroprocessing employment 8.113 6.715 1.398
Accessible by road 0.842 0.812 0.030* (0.783) (1.336)

(0.017) (0.036) % of storage and warehousing employment 0.114 0.125 -0.012
Min distance place population > 10k 8.964 10.338 -1.374 (0.060) (0.094)

(0.331) (0.677) % of households with main income from cultivation 0.362 0.467 -0.105
Min distance place population > 50k 24.223 22.988 1.235 (0.017) (0.038)

(0.449) (0.921) % of workers employed in agriculture 0.311 0.384 -0.073
Min distance place population > 100k 38.940 47.740 -8.800 (0.016) (0.033)

(1.158) (2.578)
Min distance place population > 500k 80.694 80.106 0.588

(1.094) (2.080)
Min distance to canal 2.989 4.311 -1.322

(0.200) (0.500)
Min distance to river 12.651 10.355 2.296

(0.449) (0.777)
Observations 4292 155 4292 155
Joint significance test (p-value) 0.746

Note: The table examines whether different social and cultural village-specific population characteristics can predict village matching status. The value displayed for t-tests are
the differences in the means across the groups. The bottom line indicates p-value of joint significance test. ***, **, and * indicate significance at the 1, 5, and 10 percent critical
level.
Source: 2011 Population Census and DISE data.
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2. Mini-grids data sources

Since no comprehensive data on the locations of mini-grids exists, I use a combina-
tion of satellite-derived data sources, Open Street maps data, Bloomberg data, and
World Resource Institute data. This multi-source approach enables me to overcome
the limitations of previous research and broaden the project’s scope.
Specifically, I utilize a union of solar installation data from all these sources, recog-

nizing that each has its strengths and weaknesses. Satellite data, for instance, offers
objectivity and extensive geographical coverage but may miss smaller installations
(those below 10 kW) due to its coarse imagery resolution. In contrast, incorporat-
ing data sources based on survey data, government agency information, and crowd-
sourced data helps pinpoint the locations of smaller capacity installations. I provide
detailed description of each data source in this section.

BloombergNEF data: mini-grid asset data survey (Mini-Grids
Partnership, 2020).

This dataset was compiled using information from various sources, including GIZ,
Carbon Trust, CLUB-ER, surveyed mini-grid developers, donor agencies, research
institutes, non-profit organizations, and technology vendors. It offers the advantage
of including only genuine mini-grid solar installations.42 However, it primarily fo-
cuses on third-generation renewable mini-grids, potentially limiting its coverage and
missing other types of installations. To address potential coverage limitations in
BloombergNEF’s data, I supplement it with additional data sources that encompass
a wider range of solar installations.

World Resource Institute Global Power Plant Database (Byers
et al., 2018)

This is a dataset typically used for energy research. This database is based on aggre-
gating information through primary sources (such as national government agencies,
plant developers, public utilities, power plant construction companies, intergovern-
mental organizations), secondary sources with quality assurance processes (Global
Energy Observatory, CARMA among others) and Crowdsourced data (Wikipedia,
KTH Royal Institute of Technology in Stockholm crowd sourcing). Importantly
though, at this point there is no formal process for contributing data provided by
any private citizen or submitting corrections for these data.
Sources that are directly linked to power plant operations or have the legal authority

to gather power plant statistics are considered the most reliable. The database uses
the most reliable data available for each power plant observation. Although official
data is preferred because it is most authoritative, the complete accuracy cannot
be guaranteed. However, to conduct a data quality check authors verify plants’
geolocation through satellite imagery and conduct random sampling, which lets them
estimate how reliably data is geolocated.

42The authors conducted structured interviews with 68 organizations to collect information and data.
The data collection for the report focused primarily on renewable mini-grids that are predominant among
projects installed in the recent years in order to analyze recent market trends. In general, first- and second-
generation mini-grid systems are often small and not well publicized systems that have been developed by
local communities or entrepreneurs. Third-generation systems, by contrast, are far better documented as they
often involve non-local investors or others.
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Harmonized global dataset of solar farm locations (Dunnett et al.,
2020)

It is based on Open Street Maps which is an open-source, collaborative global map-
ping project generated by a community of millions of users that can provide a unique
insight into energy infrastructure locations.43 Users may collect data using manual
ground surveys, GPS devices, aerial photography, street-level imagery, and other free
sources, or use their own local knowledge of the area. Where available, data includes
data from the national governments, satellite imagery from NOAA and others. Open-
StreetMap data has been utilized in various scientific studies. For instance, it has
been used for research on identifying remaining roadless areas (Ibisch et al., 2016),
calculating the Forest Landscape Modification Index (Grantham et al., 2020), global
mapping for power infrastructure (Arderne et al., 2020) as well as creating geospatial
energy map of India by NITI Aayog in collaboration with Indian Space Research
Organisation with the support of Energy Ministries (Jain, n.d.).
Since (2) and (3) datasets might not capture the full range of development given

sampling biases inherent to crowd sourcing approaches44 I further incorporate so-
lar installations datasets derived though applying machine learning techniques to
freely available high-resolution remotely sensed imagery that allow to objectively
map utility-scale projects.

Global inventory of PV generating units (Kruitwagen et al., 2021)

Solar cell locations in this dataset have been identified using a machine learning
algorithm, which has been trained on remote sensing images from a global inventory of
solar installations. Specifically, Solar PV installations were identified using Sentinel-2
and SPOT-6/7 multispectral remote sensing images. Sentinel-2, an Earth observation
mission by the European Space Agency and SPOT-6/7 satellites from Airbus were
utilized. Training data for prediction models came from OpenStreetMap (OSM). The
polygon labels are precise (i.e. do not contain false positives) but are noisy due to
the crowd-sourced nature of OSM data.
A validation dataset was created from hand-labeled polygons using latitude and lon-

gitude coordinates from the World Resources Institute Global Power Plant Database.
PV solar energy facilities in the validation and test set were both labeled according to
the ‘direct area’ land use convention. The test set can be used to determine the error
between the predicted and true ‘direct area’ of the PV solar energy facility, allowing
the areas to be corrected in the calculation of nominal generating capacity.
There are two important considerations related to these data. The training and

validation datasets, drawn from OSM and the Global Power Plant Database respec-
tively, are also geographically biased to the Global North - predominantly the United
States and Europe - which can potentially undermine the quality of performance
of the algorithm to identify the installations in India (South). Secondly, the coarse
resolution of the remote sensing imagery causes weaker performance of the machine
learning pipeline on smaller facilities, so we expect diminished ability of algorithm to
identify installations below 10 kW capacity.

43More information on the structure of OSM data can be found on the OSM Wiki
https://wiki.openstreetmap.org/wiki/Elements

44Specifically, the caveat of this data is that the solar installation will only appear in this data, if it has
been labeled by a person, government official or appears in official government agency data.
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Database of solar photovoltaic farms in India (Ortiz et al., 2022)

Similar to (4), this database was constructed using machine learning techniques
applied to remotely sensed imagery. However, in contrast to (4), which relies on
data sources with global coverage, this database employs an algorithm specifically
fine-tuned to identify solar installations in India. The training dataset comprises
georeferenced point labels representing the central points of various solar installations
in the states of Madhya Pradesh, Maharashtra, Kerala, Telangana, Karnataka, and
Andhra Pradesh. These labels were derived from previously mapped solar farms
available through OpenStreetMap (OSM) and collaborations with other Nature of
Conservancy (TNC) partners. Much like (4), the analysis utilized Sentinel-2 satellite
imagery from the European Space Agency.

3. Mini-grid sample construction

I utilize all installations from data source (1) since they are all mini-grids. However,
for data sources (2) to (5), I refine the sample of solar installations to include only
those that meet typical mini-grid criteria, which are as follows:

a Capacity ranging from 10 kW to 10 MW

b Not connected to the central grid 4546

c Ground-mounted (as opposed to roof or water-mounted)

d Located in rural areas (not urban)

In cases where an installation consists of multiple solar cell polygons within 500
meters of each other, I merge them and calculate the total power-generating capac-
ity as the sum of individual capacities. The final list of mini-grid locations includes
precise location data and the area of the solar installations. Most installation also
include information on installation dates and power capacities. In cases where capac-
ity information is unavailable, I estimate it based on the area of solar installations
and location-specific photovoltaic generating potential (pvout). Similarly, when in-
stallation dates are missing, I supplement the data by manually collecting installation
dates from satellite imagery.
Furthermore, I limit my baseline analysis to remote mini-grids, ensuring that each

mini-grid is at least 7 km away from the closest mini-grid. This decision is made
because my empirical strategy relies on comparing villages close to and further away
from the mini-grid. Including mini-grids within 7 km could lead to contamination of

45Determining whether a mini-grid or village is connected to the central grid can be done in various ways.
In my primary analysis, I rely on village-level central grid connectedness from the 2011 Census, where only
villages lacking electricity access for domestic and agricultural purposes, as of the 2011 Census, are included.
Additionally, I explore alternative definitions of grid connectivity. The first alternative definition relies on
OpenStreetMap (OSM) data pertaining to central grid lines. Specifically, a village is considered electrified if
any part of a central grid line intersects or is contained within the village’s geographical polygon. It is worth
noting that OSM central grid infrastructure data has previously been utilized in creating India’s geospatial
energy map through a collaborative effort involving NITI Aayog and the Indian Space Research Organisation,
with support from Energy Ministries (Jain, n.d.). The second definition utilizes nighttime brightness from
years preceding treatment (2014-2015) and restricts the sample to villages with a brightness level below 1
nanoWatts/cm2/sr, as measured by maximum brightness.

46I include only off-grid mini-grids, which are not connected to the central grid.
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the control group of one mini-grid with treated villages from another mini-grid. Over
65% of the total sample consists of remote mini-grids.
In the Appendix, Figure A3 and Table B7 present a comparison of results between

remote and non-remote mini-grids. The findings reveal that, in the case of non-remote
grids, there is no discernible divergence in the nighttime brightness trend between
control and treatment groups during the post-treatment periods. Conversely, both
control and treatment villages exhibit an increase in raw brightness levels. This
observation lends further support to the notion that contamination of the control
group of one mini-grid by treated villages from another mini-grid is indeed occurring,
resulting in diminished disparities in brightness between treated and control villages.

4. Comparison of data sources

Table C2—To what extent data sources intersect?

X/Y Bloomberg Nature Scientific Data
1: Satellite

Scientific Data
2: OSM

WRI

Bloomberg 1 0 0 0 0

Nature 0 1 0.05 0.35 0.68

Scientific

Data 1

0 0.01 1 0.22 0.02

Scientific

Data 2

0 0.03 0.12 1 0.05

WRI 0 0.11 0.02 0.09 1

Note: The table displays the outcomes of a comparative analysis of mini-grid data sources,

where each numerical value denotes the proportion of observations from dataset X (found
in the table rows) that are also present in dataset Y (found in the table columns). The data

sources under examination encompass the following: BloombergNEF data, as described

in the mini-grid asset data survey by Mini-Grids Partnership (2020) (hereafter referred to
as Bloomberg); the Global inventory of PV generating units by Kruitwagen et al. (2021)

(referred to as Nature); the Database of solar photovoltaic farms in India by Ortiz et al.

(2022) (referred to as Scientific Data 1: Satellite); a harmonized global dataset of solar
farm locations by Dunnett et al. (2020) (referred to as Scientific Data 2: OSM); and the

World Resource Institute Global Power Plant Database by Byers et al. (2018) (referred to

as WRI).
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